《卧式车床主轴箱课程设计说明书.doc》由会员分享,可在线阅读,更多相关《卧式车床主轴箱课程设计说明书.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、机械制造装备设计课程设计卧式车床主轴箱设计院 系:机械工程学院专 业:机械设计制造及其自动化专业班 级:学 号:姓 名:指导老师: 日 期: 目录绪论1第1章 设计目的1第2章 普通车床主动传动系统参数的拟定12.1 已知条件12.2 车床参数和电动机的选择12.3 确定转速级数22.4 车床的规格2第3章 运动设计23.1 拟定传动方案23.2 确定结构式23.3 设计结构网23.5 确定转速图33.6 确定各变速组传动副齿轮齿数33.7 绘制传动系统图5第4章 动力设计54.1 带传动设计64.1.1计算设计功率Pd64.1.2选择带型64.1.3确定带轮的基准直径并验证带速74.1.4确
2、定中心距离、带的基准长度并验算小轮包角84.1.5确定带的根数z94.1.6确定带轮的结构和尺寸94.1.7确定带的张紧装置94.1.8计算压轴力94.2 齿轮传动设计114.3 轴的设计与校核134.4 主轴设计计算及校核174.5 片式摩擦离合器的选择和计算204.6 轴承的选用及校核214.7 键的选用及校核22第5章 轴承端盖设计23第6章 箱体的结构设计236.1 箱体材料236.2 箱体结构24第7章 润滑与密封247.1 润滑设计247.2 润滑油的选择25总结26参考文献26 绪论主传动系统的设计是机床设计中非常重要的组成部分,本次设计主要从机床的级数入手,与结构式,结构网拟定
3、,再到齿轮和轴的设计,再选择主传动配合件对轴和齿轮及配合件进行校核,将主传动方案“结构化”,设计主轴变速箱装配图及零件图,侧重进行传动轴组件、主轴组件、变速机构、箱体、润滑、与密封、传动轴及滑移齿轮零件的设计,完成设计任务。本次突出了机构设计的要求,在保证机床的基本要求下,根据机床设计的原则拟定结构式和结构网,对机床的机构进行精简,力求降低生产成本;主轴和齿轮设计在满足强度要求的同时材料的选择也应采用折中的原则,不选择过高强度的材料从而造成浪费。第1章 设计目的通过机床主运动机械变速传动系统得结构设计,在拟定传动和变速的结构方案过程中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编
4、写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并具有初步的结构分析、结构设计和计算能力。第2章 普通车床主动传动系统参数的拟定2.1 已知条件2.2 电动机的选择此经济型数控车床根据任务书上提供的条件,电动机的功率为4KW,选择电动机的型号为Y112M-4,电动机具体数据如下表所示:电动机参数表电动机信号额定功率满载转速级数同步转速Y132S-45.5KW1440r/min4级1500r/min2.3 确定转速级数根据任务书提供的条件,可知传动公比=1.58。根据机械制造装备设计由公式: 则有: Z=+1 因为=1.58=根据机械制造装备设计查表标准数列。首
5、先找到最小极限转速160,再每跳过6个数(1.261.06)取一个转速,即可得到公比为1.58的数列:160、250、400、630、1000、1600、2500、4000 r/min。2.4 车床的规格根据以上的计算和设计任务书可得到本次设计车床的基本参数:车床的主参数(规格尺寸)和基本参数表最大加工直径最高转速()最低转速()电机功率P(kW)公比转速级数Z40040001605.51.588第3章 运动设计3.1 拟定传动方案拟定传动方案,包括传动型式的选择以及开停、换向、制动、操纵等整个传动系统的确定。传动型式则指传动和变速的元件、机构以及其组成、安排不同特点的传动型式、变速类型。传动
6、方案和型式与结构的复杂程度密切相关,和工作性能也有关系。因此,确定传动方案和型式,要从结构、工艺、性能及经济性等多方面统一考虑。3.2 确定结构式已知Z=x3ba、b为正整数,即Z应可以分解为2和3的因子,以便用2、3联滑移齿轮实现变速。取Z=8级 则Z=22对于Z=8可分解为:Z=212224。3.3 设计结构网传动副的极限传动比和传动组的极限变速范围:在降速传动时,为防止被动齿轮的直径过大而使进径向尺寸过大,常限制最小传动比,1/4,升速传动时,为防止产生过大的振动和噪音,常限制最大传动比,斜齿轮比较平稳,可取,故变速组的最大变速范围为/810。根据“前多后少” , “先降后升” , 前密
7、后疏,结构紧凑的原则,选取传动方案 Z=,易知第二扩大组的变速范围r=6.238 满足要求,其结构网如图2.1。 Z=212224图2.1 结构网3.5 确定转速图3.6 确定各变速组传动副齿轮齿数确定齿轮齿数的原则和要求:齿轮的齿数和不应过大;齿轮的齿数和过大会加大两轴之间的中心距,使机床结构庞大,一般推荐100200.最小齿轮的齿数要尽可能少;但同时要考虑:最小齿轮不产生根切,机床变速箱中标准直圆柱齿轮,一般最小齿数18;受结构限制的最小齿轮最小齿数应大于1820;齿轮齿数应符合转速图上传动比的要求:实际传动比(齿数之比)与理论传动比(转速图上要求的传动比)之间又误差,但不能过大,确定齿轮
8、数所造成的转速误差,一般不应超过10%(-1)%,即:%-要求的主轴转速;-齿轮传动实现的主轴转速;齿轮齿数的确定,当各变速组的传动比确定以后,可确定齿轮齿数。对于定比传动的齿轮齿数可依据机械设计手册推荐的方法确定。对于变速组内齿轮的齿数,如传动比是标准公比的整数次方时,变速组内每对齿轮的齿数和及小齿轮的齿数可以从机械制造装备设计表3-9中选取。一般在主传动中,最小齿数应大于1820。采用三联滑移齿轮时,应检查滑移齿轮之间的齿数关系:三联滑移齿轮的最大齿轮之间的齿数差应大于或等于4,以保证滑移是齿轮外圆不相碰。(1)Sz100-120,中型机床Sz=70-100(2)直齿圆柱齿轮Zmin18-
9、20,m4(7)齿轮齿数的确定。变速组内取模数相等,据设计要求Zmin1820,齿数和Sz100120,由表4.1,根据各变速组公比,可得各传动比和齿轮齿数,各齿轮齿数如表2.2。表2.2 齿轮齿数传动比基本组第一扩大组第二扩大组1:11.58:11.58:11:1.581.58:11:4代号ZZZZZZZZZ5Z5ZZ齿数300 3723 52333352553518723.7 绘制传动系统图第4章 动力设计4.1 带传动设计输出功率P=4kW,转速n1=1440r/min,n2=1000r/min4.1.1计算设计功率Pd表4 工作情况系数工作机原动机类类一天工作时间/h10161016载
10、荷平稳液体搅拌机;离心式水泵;通风机和鼓风机();离心式压缩机;轻型运输机1.01.11.21.11.21.3载荷变动小带式运输机(运送砂石、谷物),通风机();发电机;旋转式水泵;金属切削机床;剪床;压力机;印刷机;振动筛1.11.21.31.21.31.4载荷变动较大螺旋式运输机;斗式上料机;往复式水泵和压缩机;锻锤;磨粉机;锯木机和木工机械;纺织机械1.21.31.41.41.51.6载荷变动很大破碎机(旋转式、颚式等);球磨机;棒磨机;起重机;挖掘机;橡胶辊压机1.31.41.51.51.61.8根据V带的载荷平稳,两班工作制(16小时),查机械设计P296表4,取KA1.1。即4.1
11、.2选择带型普通V带的带型根据传动的设计功率Pd和小带轮的转速n1按机械设计P297图1311选取。根据算出的Pd4.4kW及小带轮转速n11440r/min ,查图得:dd=80100可知应选取A型V带。4.1.3确定带轮的基准直径并验证带速由机械设计P298表137查得,小带轮基准直径为80100mm则取dd1=100mm ddmin.=75 mm(dd1根据P295表13-4查得)表3 V带带轮最小基准直径槽型YZABCDE205075125200355500由机械设计P295表13-4查“V带轮的基准直径”,得=140mm 误差验算传动比: (为弹性滑动率)误差 符合要求 带速 满足5
12、m/sv300mm,所以宜选用E型轮辐式带轮。总之,小带轮选H型孔板式结构,大带轮选择E型轮辐式结构。带轮的材料:选用灰铸铁,HT200。4.1.7确定带的张紧装置 选用结构简单,调整方便的定期调整中心距的张紧装置。4.1.8计算压轴力 由机械设计P303表1312查得,A型带的初拉力F0117.83N,上面已得到=172.63o,z=4,则对带轮的主要要求是质量小且分布均匀、工艺性好、与带接触的工作表面加工精度要高,以减少带的磨损。转速高时要进行动平衡,对于铸造和焊接带轮的内应力要小, 带轮由轮缘、腹板(轮辐)和轮毂三部分组成。带轮的外圈环形部分称为轮缘,轮缘是带轮的工作部分,用以安装传动带
13、,制有梯形轮槽。由于普通V带两侧面间的夹角是40,为了适应V带在带轮上弯曲时截面变形而使楔角减小,故规定普通V带轮槽角 为32、34、36、38(按带的型号及带轮直径确定),轮槽尺寸见表7-3。装在轴上的筒形部分称为轮毂,是带轮与轴的联接部分。中间部分称为轮幅(腹板),用来联接轮缘与轮毂成一整体。表 普通V带轮的轮槽尺寸(摘自GB/T13575.1-92) 项目 符号 槽型 Y Z A B C D E 基准宽度 b p 5.3 8.5 11.0 14.0 19.0 27.0 32.0 基准线上槽深 h amin 1.6 2.0 2.75 3.5 4.8 8.1 9.6 基准线下槽深 h fmi
14、n 4.7 7.0 8.7 10.8 14.3 19.9 23.4 槽间距 e 8 0.3 12 0.3 15 0.3 19 0.4 25.5 0.5 37 0.6 44.5 0.7 第一槽对称面至端面的距离 f min 6 7 9 11.5 16 23 28 最小轮缘厚 5 5.5 6 7.5 10 12 15 带轮宽 B B =( z -1) e + 2 f z 轮槽数 外径 d a 轮 槽 角 32 对应的基准直径 d d 60 - - - - - - 34 - 80 118 190 315 - - 36 60 - - - - 475 600 38 - 80 118 190 315 47
15、5 600 极限偏差 1 0.5 V带轮按腹板(轮辐)结构的不同分为以下几种型式: (1) 实心带轮:用于尺寸较小的带轮(dd(2.53)d时),如图7 -6a。 (2) 腹板带轮:用于中小尺寸的带轮(dd 300mm 时),如图7-6b。 (3) 孔板带轮:用于尺寸较大的带轮(ddd) 100 mm 时),如图7 -6c 。 (4) 椭圆轮辐带轮:用于尺寸大的带轮(dd 500mm 时),如图7-6d。(a) (b) (c) (d)图7-6 带轮结构类型根据设计结果,可以得出结论:小带轮选择实心带轮,如图(a),大带轮选择腹板带轮如图(b) 4.2 齿轮传动设计1.确定模数:(1)-轴:按齿
16、轮弯曲疲劳计算:其中:为大齿轮的计算转速;Z为大齿轮齿数; mj=16338 模数取和中较大值。故第一变数组齿轮模数因取m=4; (2) -轴:按齿轮弯曲疲劳计算:其中:为大齿轮的计算转速;Z为大齿轮齿数; mj=16338 模数取和中较大值。故第一变数组齿轮模数因取m=4.0; (3)-轴: 按齿轮弯曲疲劳计算:其中:为大齿轮的计算转速;Z为大齿轮齿数; mj=16338 模数取和中较大值。故齿轮模数因取m=5;变速组-轴-轴-轴模数m4452.确定齿宽: 由公式得:第一套啮合齿轮 第二套啮合齿轮 第三套啮合齿轮一对啮合齿轮,为了防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小而增大轮齿
17、的载荷,设计上,应使小齿轮齿宽比相齿合的另一齿轮宽一些。3.确定齿轮参数:标准齿轮参数:从机械原理表5-1查得以下公式齿顶圆直径 ; 齿根圆直径;分度圆直径 ;齿顶高 ;齿根高 ; 齿轮的具体值见下表:模数齿数齿宽分度圆直径齿顶圆直径齿根圆直径齿顶高齿根高437241481561384523249210082302412012811030241201281104522420821619845332413214012233241321401225224208216198518249010077.5455524275285262.57224360370347.53524175185162.54.确
18、定轴间中心距: ;4.3 轴的设计与校核(1)确定主轴的计算转速:由转速图可知:主轴的计算转速是低速第一个三分之一变速范围的最高以转速,即同理可得各传动轴的计算转速:轴计算转速r/min710355125400(2)确定各齿轮的计算转速:传动组c中,18/72只需计算z = 18 的齿轮,计算转速为355r/min;60/30只需计算z = 30的齿轮,计算转速为250r/min;传动组b计算z = 22的齿轮,计算转速为355r/min;传动组a应计算z = 24的齿轮,计算转速为710r/min。(3)核算主轴转速误差: 即主轴转速合适。(4)各轴的功率:取各传动件效率如下:带传动效率:轴
19、承传动效率:齿轮传动效率:则有各传动轴传递功率计算如下:(5)计算各轴的输入转矩:由机械原理可知转矩计算公式为: (6)传动轴的直径估算:当轴上有键槽时,d值应相应增大45%;当轴为花键轴时,可将估算的d值减小7%为花键轴的小径;空心轴时,d需乘以计算系数b,b值见机械设计手册表7-12。轴有键槽,轴和轴因为要安装滑移齿轮所以都采用花键轴,有键槽并且轴为空心轴.根据以上原则各轴的直径取值: a.轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 考虑有键槽和轴承,轴
20、加大5%:所以取d=22mmb. 轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 考虑有键槽,轴加大5%:所以取最小d=30mmc. 轴的设计计算:(1)选择轴的材料由文献1中的表11-1和表11-3选用45号钢,调质处理,硬度,。(2)按扭矩初算轴径 根据文献1中式(11-2),并查表11-2,取C=115,则 有键槽和轴承,轴加大5%:; 取d=38mm.根据以上计算各轴的直径取值如下表示:轴轴轴轴最小轴径值223038(7)轴的结构设计及校核计算:(1)确
21、定轴各段直径和长度:段:安装圆锥滚子轴承, 段:安装两个个双联齿轮块,同时利用轴肩定位轴承,由轴肩计算公式 所以取;段:安装圆锥滚子轴承,(2)轴的强度校核:轴的校核主要校核危险截面已知轴齿轮6、齿轮8数据如下:求圆周力:;径向力;轴承支反力:齿轮6对轴的支反力:齿轮8对轴的支反力:垂直面的弯矩:由以上计算可知危险截面在轴的右端齿轮6处,跨距282mm;直径为48mm段;轴承的支反力:水平面弯矩:合成弯矩:已知转矩为:转矩产生的剪力按脉动循环变化,取截面C处的当量弯矩:校核危险截面C的强度则有该轴强度满足要求。同理可知,按照此方法校核其他传动轴,经检验,传动轴设计均符合要求。转矩图4.4 主轴
22、设计计算及校核主轴上的结构尺寸虽然很多,但起决定作用的尺寸是:外径D、孔径d、悬伸量a和支撑跨距L。1.主轴前后轴颈直径的选择:主轴的外径尺寸,关键是主轴前轴颈直径。一般按照机床类型、主轴传递的功率或最大加工直径,参考表3-7选取。最大回转直径400mm车床,P=4KW查机械制造装备设计表3-7,前轴颈应,初选,后轴颈取。2.主轴内孔直径的确定:很多机床的主轴是空心的,为了不过多的削主轴刚度,一般应保证d/D 0.7。取;经计算选取内孔直径d=40mm。3.主轴前端伸长量a:减小主轴前端伸长量对提高提高主轴组件的旋转精度、刚度、和抗震性有显著效果,因此在主轴设计时,在满足结构的前提下,应最大限
23、度的缩短主轴悬伸量a。根据结构,定悬伸长度;取a=100mm。4.支撑跨距L: 最佳跨距;取值合理跨距;取值。5.主轴刚度校验:机床在切削加工过程中,主轴的负荷较重,而允许的变形由很小,因此决定主轴结构尺寸的主要因素是它的变形大小。对于普通机床的主轴,一般只进行刚度验算。通常能满足刚度要求的主轴,也能满足强度要求。只有重载荷的机床的主轴才进行强度验算。对于高速主轴,还要进行临界转速的验算,以免发生共振。 一弯曲变形为主的机床主轴(如车床、铣床),需要进行弯曲刚度验算,以扭转变形为主的机床(如钻床),需要进行扭转刚度验算。当前主轴组件刚度验算方法较多,没能统一,还属近似计算,刚度的允许值也未做规
24、定。考虑动态因素的计算方法,如根据部产生切削颤动条件来确定主轴组件刚度,计算较为复杂。现在仍多用静态计算法,计算简单,也较适用。主轴弯曲刚度的验算;验算内容有两项:其一,验算主轴前支撑处的变形转角,是否满足轴承正常工作的要求;其二,验算主轴悬伸端处的变形位移y,是否满足加工精度的要求。对于粗加工机床需要验算、y值;对于精加工或半精加工机床值需验算y值;对于可进行粗加工由能进行半精的机床(如卧式车床),需要验算值,同时还需要按不同加工条件验算y值。支撑主轴组件的刚度验算,可按两支撑结构近似计算。如前后支撑为紧支撑、中间支撑位松支撑,可舍弃中间支撑不计(因轴承间隙较大,主要起阻尼作用,对刚度影响较
25、小);若前中支撑位紧支撑、后支撑为松支撑时,可将前中支距当做两支撑的之距计算,中后支撑段主轴不计。机床粗加工时,主轴的变形最大,主轴前支撑处的转角有可能超过允许值,故应验算此处的转角。因主轴中(后)支撑的变形一般较小,故可不必计算。主轴在某一平面内的受力情况如图:在近似计算中可不计轴承变形的影响,则该平面内主轴前支撑处的转角用下式计算;切削力的作用点到主轴前支承支承的距离S=a+W,对于普通车床,W=0.4H,(H是车床中心高,设H=200mm)。 则: 当量切削力的计算: 主轴惯性矩式中:因为;所以可知主轴前支撑转角满足要求。4.5 片式摩擦离合器的选择和计算片式摩擦离合器目前在机床中应用广
26、泛,因为它可以在运转中接通或脱开,具有结合平稳、没有冲击、结构紧凑的特点,部分零件已经标准化,多用于机床主传动。【1】 摩擦片的径向尺寸摩擦片的外径尺寸受到轮廓空间的限制,且受制于轴径d,而摩擦片的内外径又决定着内外摩擦片的环形接触面积的大小,直接影响离合器的结构和性能。一般外摩擦片的外径可取:d为轴的直径,取d=25,所以25+5=30mm特性系数是外片内径与内片外径D2之比取=0.69,则内摩擦片外径【2】 按扭矩选择摩擦片结合面的数目一般应使选用和设计的离合器的额定静扭矩和额定动扭矩满足工作要求,由于普通机床是在空载下启动反向的,故只需按离合器结合后的静负载扭矩来计算。根据机械制造装备设
27、计课程设计有公式。即:式中 速度修正系数,由表10.7。 每小时结合数修正系数,干式取 1 ;湿式按表10.8选取。 摩擦面对数修正系数。 取Z=7故摩擦片总数为Z+1=8片,内摩擦片为9片。用同样的方法可以算出反转摩擦片数:外摩擦片4片,内摩擦片5片。【3】离合器的轴向拉紧力由得:查机床零件手册,摩擦片的型号如下:内片:Dp=72.85,查表取:D=44mm,d=26mm b=3mm,B=9.7mm H=23.5mm,=0.5mm外片:Dp=72.85,查表取:D=86mm,d=30mm b=2mm,B=20mm H=48mm,H1=42mm=0.5mm内外片的最小间隙为:0.20.44.6
28、 轴承的选用及校核1】各传动轴轴承选取的型号:主轴 前支承: NN3018K 型 圆锥孔双列圆柱滚子轴承:9014037;后支撑:352212 双列圆锥滚子轴承:6011066;轴 带轮处:308 深沟球轴承轴409023;轴与箱体处:305 GB276-89:256217;齿轮:7305C 角接触轴承GB292-83:255215; 轴 前、后支承:7306E 圆锥滚子轴承GBT297-84 :307219; 轴 前、后支承:7308E 圆锥滚子轴承GBT297-84 :409023;2】各传动轴轴承的校核:假定:按两班制工作,工作期限10年,每年按300天计,T=48000h。依据机械设计
29、轴承校核公式如下:轴轴承校核:已知选用轴承为:深沟球轴承 305 GB276-89:256217;基本额定动载荷;由于该轴的转速为定值710r/min;依据设计要求应对轴末端轴承进行校核。最小齿轮直径;轴传递转矩齿轮受到的切向力齿轮受到的轴向力齿轮受到的径向力因此轴承当量动载荷因此该轴承符合要求,选取合适。同理可校核其他传动轴轴承,经校核各轴轴承选取均合适。4.7 键的选用及校核轴上的键的选用和强度校核:轴与齿轮的联接采用普通平键联接,轴径d=48mm;齿轮快厚度L=78.5mm;传递扭矩;选用A型平键,初选键型号为,。查机械设计表7-9得。由机械设计式(7-14)和式(7-15)得由上式计算
30、可知挤压强度满足。由上式计算可知抗剪切强度满足。主轴上的键的选用和强度校核主轴与齿轮的联接采用普通平键联接,轴径d=80mm;齿轮快厚度L=95mm;传递扭矩;选用A型平键,由于主轴空心所以选择键,。查机械设计表7-9得。由机械设计式(7-14)和式(7-15)得由上式计算可知挤压强度满足。由上式计算可知抗剪切强度满足。第5章 轴承端盖设计参照机械设计及机械制造基础课程设计减速器端盖设计方案来设计主轴箱端盖,材料采用HT150,依据轴承外径确定各端盖的结构尺寸,如图所示:(依据该参数设计各轴承端盖,详见装配图纸图案)第6章 箱体的结构设计6.1 箱体材料箱体多采用铸造方法获得,也有用钢板焊接而
31、成。铸造箱体常用材料为HT15-33,强度要求较高的箱体用HT20-40,只有热变形要求小的情况下才采用合金铸铁,采用HT20-40。与床身做成一体的箱体材料应根据床身或导轨的要求而定。箱体要进行时效处理。6.2 箱体结构1、箱体结构设计要点(1) 根据齿轮传动的中心距、齿顶圆直径、齿宽 等几何尺寸,确定减速器的箱体的内部大小。由中心距确定箱体的长度,由齿顶圆直径确定箱体的高度。由齿宽来确定箱体的宽度。(2) 依据铸造(或焊接)箱体的结构尺寸、工艺要求,确定箱体的结构尺寸,绘制箱体。如箱盖,箱座及螺栓的尺寸。(3) 根据齿轮的转速确定轴承润滑的方法与装置,选择轴承端盖的类型。(4) 附件设计与
32、选择。同时,可以进行轴系的结构设计,选择轴承。 箱体的尺寸名称符号尺寸关系箱座壁厚15主轴左侧凸缘厚73箱座凸缘厚32主轴右侧凸缘厚37外箱壁至轴承端面距离齿轮顶圆与内箱壁距离18齿轮端面与内箱壁距离102、铸造工艺性要求 为了便于铸造以及防止铸件冷却时产生缩孔或裂纹,箱体的结构应有良好的铸造工艺性。3、加工工艺性对结构的要求 由于生产批量和加工方法不同,对零件结构有不同要求,因此设计时要充分注意加工工艺对结构的要求。4、装配工艺对结构的要求 为了更快更省力地装配机器,必须充分注意装配工艺对接否设计的要求。第7章 润滑与密封7.1 润滑设计(1) 普通机床主轴变速箱多用润滑油,其中半精加工、精
33、加工和没有油式摩擦离合器的机床,采用油泵进行强制的箱内循环或箱外循环润滑效果好。粗加工机床多采用结构简单的飞溅润滑点。(2) 飞溅润滑要求贱油件的圆周速度为0.68米/秒,贱油件浸油深为1020毫米(不大于23倍轮齿高)。速度过低或浸油深度过浅,都达不到润滑目的,速度过高或浸油深度过深,搅油功率损失过大产生热变形大,且油液容易气化,影响机床的正常工作。油的深度要足够,以免油池底部杂质被搅上来。(3) 进油量的大小和方向回油要保证畅通,进油方向要注意角接触轴承的泵油效应,即油必须从小端进大端出。箱体上的回油孔的直径应尽可能的大些,一般应大于进油孔的直径。箱体上放置油标,一边及时检查润滑系统工作情
34、况。(4) 放油孔应在箱体适当位置上设置放油孔,放油孔应低于油池底面,以便放净油,为了便于接油最好在放油孔处接长管。(5) 防止或减少机床漏油 箱体上外漏的最低位置的孔应高出油面。 轴与法兰盖的间隙要适当,通常直径方向间隙11.5毫米。 主轴上常采用环形槽和间隙密封,效果要好,槽形的方向不能搞错。 箱盖处防漏油沟应设计成沟边向箱体油沟内侧偏一定距离,大约为35毫米。7.2 润滑油的选择 润滑油的选择与轴承的类型、尺寸、运转条件有关,速度高选粘度低的,反之选粘度高的。润滑油粘度通常根据主轴前颈和主轴最高转速选择。25总结 金属切削机床主轴箱的课程设计任务完成了,虽然设计的过程比较繁琐,而且刚开始
35、还有些不知所措,但是在同学们的共同努力下,再加上老师的悉心指导,我终于顺利地完成了这次设计任务。本次设计巩固和深化了课堂理论教学的内容,锻炼和培养了我综合运用所学过的知识和理论的能力,是我独立分析、解决问题的能力得到了强化。通过本次设计我学到了很多东西,不但包括一些设计的方法,更重要的是,我学会了如何独立思考,解决问题。在设计中,会不断地遇到问题,这是就要我们去想办法解决,让我们去查资料,查手册。在这次毕业设计中,我学会的一个解决问题的重要方法就是查设计手册。设计是一个系统的过程,通过这个过程,我们学会了分析问题、解决问题的一些基本的方法,让我们系统回顾了大学四年学过的知识,也为我们将来的工作打下了基础。参考文献 1机械制造装备设计 赵雪松主编 华中科技大学出版社2机械设计 濮良贵主编 高等教育出版社3机械设计机械设计基础课程设计 王昆主编 高等教育出版社 4机械制造装备设计课程设计 陈立德编 高等教育出版社 5机械原理第七版 孙恒主编 高等教育出版社 6机械设计手册第五版-轴及其连接 机械工业出版社7机械设计手册第五版-机械传动 机械工业出版社8机械设计手册第五版-轴承 机械工业出版社9画法几何及机械制图第六版 朱冬梅主编 高等教育出版社
限制150内