《“对称性”在高中物理中的应用.docx》由会员分享,可在线阅读,更多相关《“对称性”在高中物理中的应用.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、“对称性”在高中物理中的应用 正如“对称与近代物理”专题的主编和主讲杨振宁博士所说:对称的概念像人类文明一样古老,它是如何诞生的,或许是一个永恒的隐私。但是大自然中的对称现象却随处可见,对称是大自然的奇异特性之一。随着文明的发展,对称性的概念渐渐扩展到绘画、雕塑、音乐、建筑、文学等人类活动的各个领域,它更是现代物理学的基本思想,是现代物理学的基本探讨方法之一。 然而在中学阶段虽有许多对称性问题,但很少让学生运用对称性概念去分析问题,好像它高深莫测,其实对称性概念可以应用在一些高深的物理问题中,也可以应用到一些简洁的中学物理问题中去。作为中学物理老师,我觉得在中学阶段就应当让学生相识对称性,了解
2、对称性,知道对称性的重要性,并且能够运用对称性解决一些具有对称性的简洁问题。这样做,对培育学生的创新科研实力,培育学生的反向思维实力和发散性思维实力,培育学生的推断实力都会有极大的帮助。 一、对称性在中学物理中的详细表现 1在力学中,自由落体和牛顿运动定律都表现出肯定的对称性。对于一个做自由落体运动的质点,它的位移 速度 和加速度 与时间 的关系分别为: s=gt,v=gt,a=g ,假如把t换为-t,得到:s=gt,v=gt,a=g。可以说,对一个做自由落体运动的质点进行时间反演操作后,它的位移仍是原值,速度的方向与原来相反、速率不变,加速度的大小和方向均不变。这表明竖直上抛运动和自由落体运
3、动是对称的。再看牛顿第三定律,其数学表达式为=,这表明,作用力和反作用力统一在一个相互作用的过程之中,有作用力必有反作用力,它们是相互联系、相互依存的,其力的性质也必定相同。作用力是弹性力,反作用力也肯定是弹性力,作用力与反作用力是恒久不行能抵消的。除此之外,运动和静止、功和能、简谐运动和平面简谐波等都表现出详细的对称性。 2.在电磁学中,点电荷四周的电场是球对称的;具有规则形态的网格电路是对称的,此外,对称性的详细表现还有:在等势面上,检验电荷的电势能大小到处相等;描述电子在库仑场中运动的球函数体现了很高的对称性;封闭体系内,正负电荷的代数和在任何物理过程中始终保持不变,等等。 3.在热学和
4、光学以及近代物理初步中,对称性也体现得特别详细。比如,晶体的结构具有很高的对称性,光的反射定律,折射定律以及平面镜成像中物与像的对称都体现了对称性。此外,热力学第肯定律也表现了对称性;光的干涉条纹和衍射条纹具有肯定的对称性;当然在光路可逆性原理中,物可当作像,像也可视为物同样是对称性的表现;爱因斯坦的相对论更是对称性的表现,等等。 二、利用对称性分析中学物理问题 中学物理中,不论是在力学、电磁学,还是在热学、光学中到处都体现出对称性。中学老师在物理课程的教学中常常遇到大量的对称性问题,面对这些问题,假如利用对称性分析经常可使问题变得简洁易解。下面针对中学物理中的一些对称性问题举例说明。 1.对
5、称性在中学力学中的应用 例1、在中学物理的学习中,经常要探讨物体的上抛运动问题。假如有一个作竖直上抛运动的物体,如图1所示,到达最高点的最终一秒内的高度是它上行到最大高度的1/5,求这个物体上升的最大高度是多少? 解析:对于这个问题,假如用通常的方法来解,设上抛的初速度为V,最大高度为h,时间为t, 联立方程组,解得h=25(m),t=(s)。但是这种方法显得较为麻烦。 现在,用对称性方法,先对这种上抛运动作一个简洁分析。物体的上抛运动,在时间的反演化换下就变成了一个自由落体运动,由运动的对称性可知,物体作竖直上抛运动到达最大高度前的最终一秒钟上升的高度,正好就是物体作自由落体时最初一秒钟内落
6、下的高度。因此,立刻就可以得到物体最大高度为 h=5(1/2)gt=5(1/2)101m=25(m) 从而使处理问题大为简化。 例2、受力分析是中学物理的一个重点,考虑这样一个问题,如图2所示,这是两个用弹簧连接的物体,质量分别为和,弹簧的劲度系数为k,求须要多大的压力F加在 上,才能在压力撤去后跳起来时,刚好把也提起来? 解析:对于这个问题,通常是用机械能守恒定律来进行求解,初始状态的速度为0,最终状态的速度仍旧为0,则设起先时弹簧被压缩了,刚好弹起的瞬间弹簧伸长了 ,依据机械能守恒定律, 由此可以看出用机械能守恒的方法来解,过程较为困难,下面用对称性分析来解。从这个物理体质的对称性来看,弹
7、簧是一个具有对称性的物体,对于轻质弹簧,用力F压它,松手后弹簧伸长,效果上与用同样大小的力F拉弹簧所产生的状况相当,即运动过程具有时间反演不变性。因此为了使物体跳起来时下面的物体 刚好能被拉起来,这时弹簧发生的形变应当与用一个力f提起这个系统使下面物体刚好被拉起来一样,而这个力f至少要等于系统的重量,也就是 f=(m+m)g 依据弹簧的对称性, F也至少应当为f,则有 F=f=mg+mg 可见,不用去求解方程式,干脆分析系统的对称性,就可以简洁找到结果。 2对称性在中学电磁学中的应用 在电磁学中,利用对称性分析,也可以使问题得到大量化简,从而削减变量,化繁为简,使计算大为简化。 例3如图3,电
8、荷q匀称分布在半球面ABC上,球面的半径为R,CD为通过半球面顶点C与球心O的轴线,PQ、 为CD轴线上离O距离相等的两点。己知P点的电势为U ,试求Q点的电势U。 解析:本题中只有半个带电球面,明显用中学的学问无法干脆求出Q点的电势U ,但从题中可以知道P点的电势U ,并且P点离球心的距离与Q点离球心的距离相等。为此,在半球面ACB的右侧填补一个相同的带电半球面ACB,那么, ACB在Q点的电势U可以看作整个带电球面在Q点的电势减去右半球面 在ACB点的电势。 由于整个带电球体在Q点的电势为k•,又依据对称性,半球面ACB在Q点的电势和半球面ACB在P点的电势相等,也为U,所以U
9、=K•-U 3对称性在中学光学中的应用 在光学中,反射定律与折射定律体现了详细的对称性。反射定律中,反射线位于入射面内以及折射定律中,折射线也位于入射面内,这两个结论假如用对称性来分析,就很简单得出结论。 由于两种介质分别是匀称的,光假如由A点放射,在C点反射,设xoy平面为两种介质的界面,那么,假如反射线在坐标系的第1卦限,由相同的理由,反射线也应在坐标系的第2卦限,因此,反射线必需在yoz平面内,这就说明白入射线,反射线,入射点的法线必需共面的缘由。这个问题也可换一个提法:若从A点放射出的光经反射后到达B点,那么A点,B点和反射点C所确定的平面必定垂直于界面。假如不是这样,例如
10、,在图4中X点的X坐标大于零,那么依据问题的对称性, C点的X坐标也应当小于零,所以C点的X坐标只能等于零。 在折射定律中,若两种介质分别是匀称的,那么折射线也应在入射面内,这也可以由问题的对称性,仿照上面的探讨得出。 三、结束语 通过以上的分析探讨,我们知道物理学到处体现了对称性,到处应用了对称性。中学物理中,不论是力学、电磁学,还是其它的分支中都存在大量的与对称有关的问题。对那些物理问题,利用对称性分析的方法来解题,可以免去大量繁杂的数学运算,并且物理意义明显,物理过程清楚,突出科学思想。在这些问题中,假如离开了对称性,则有些求解是较为困难的。 鉴于对称性在物理解题中的重要作用,在中学物理
11、这一层次的教学中,老师应当把“物理中的对称性思维”融于教学中,在教授相关内容时要特殊重视引导学生从对称性的角度思索问题,通过对一些具有对称性问题的分析解答使学生了解一些一般的对称性思想。更为重要的是,这样做有利于培育学生学习物理的爱好,能让学生得到一些学习规律和方法,激发学习中的灵感,还可以提高学生的解题实力,提高学生的物理直觉。虽然说对称性在物理学深层领域的探讨已经比较完善,在一般物理,特殊是中学物理中的探讨却往往被人忽视。万事都是从小做起、从基础做起,我想人们应当重视对称性在中学物理这一领域的重要性。因此,对于中学物理教化工作者来说,如何在教学中向学生传授一些对称性思想,利用物理学中的有关事实说明对称性的重要性及应用,无疑是一个值得重视,值得进一步探讨的问题。 (作者单位:浙江省常山第一中学) 注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文 第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页
限制150内