2023年圆的认识教学案例反思剖析1.pdf
《2023年圆的认识教学案例反思剖析1.pdf》由会员分享,可在线阅读,更多相关《2023年圆的认识教学案例反思剖析1.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆的认识教学案例 【背景分析】圆的认识 是小学数学教材中非常传统的一个内容,许多名家将它作为典型研究课例,以不同视角作过精彩演绎。朱乐平老师巧用“脸部整圆术”教学圆的知识,利用两课时的时间让学生逐步感知圆的特征;潘小明老师创设现实中投圈是否公平这一问题情境,展开对圆的探索;张齐华老师运用数学文化的视角为圆的认识打开另一片天空。其实对于圆的认识这样一节研究课,已经被上课者挖掘得非常彻底了,甚至于老师们欣赏圆的认识这节课也已经达到了相当高的水准了。我们知道,圆的科学定义是:在平面内,到达一个定点距离等于定长的点的轨迹叫做圆。但是很少人尝试着从圆的本质属性出发,教学圆的认识。所以我尝试着从圆的本质属
2、性出发,引领学生用“点的轨迹”的思想去感悟、体验和理解圆的本质属性,实现深入浅出的教学圆的认识。所以我提出了对圆的认识教学的几点思考:1、教学圆的特征时,能否在小学阶段就让学生领悟“圆是平面内到定点距离相等的点的集合”这一本质特征,为学生后续学习和今后有效发展铺设奠基石?2、探究圆的特征时,除了借助探究材料和有效的实践操作,是否可以利用想象、推理有价值的数学思考方式来学习圆的特征?3、圆具有深厚的文化内涵,是否可以将圆的文化融合在数学学习过程之中,实现数学知识与数学文化水乳相溶,使数学课堂显得丰满而圆润?【过程描述】一、课前游戏:师:在规定的时间内看谁画的点多。规则:先在白纸上画一个点,然后再
3、画一些点,要求到第一个点的距离都是 3 厘米。师:如果有时间给你画,你能画多少个点?生:可以画无数个点。师:这些点将会成为什么图形?生:圆形。师:我能在很短的时间内画无数个这样的点。你信吗?(老师用圆规将图画成圆形,板书课题:圆的认识)二、教学新课 师:你能把刚才自己画的那幅图补充成圆形吗?师:这是我们第一次用圆规画圆,你觉得哪儿最容易出问题?生:圆画到最后可能会合不拢。师:为什么会合不拢?是什么原因呢?生:圆规两只脚忽大忽小就会这样。师:就是说圆规两只脚距离不能改变。还有其他情况吗?生:也有可能针尖动了,也会画不圆。师:针尖也不能动,看来我们要把重心放在针尖这一边,固定好两脚尖的距离,旋转一
4、周后就可以得到圆形,这些都是画圆的技巧。师:同学们,看到这个圆,让你联想到生活中的哪些物体?生:硬币、月饼、钟面 生:篮球 师:真是很厉害,能把平面图型想象成立体图形,不过老师要告诉你,球形与圆形还是有很大区别的。能说完吗?老师也带来了一些。瞧!(美丽的圆形图片)就连大自然对圆也是情有独钟!(欣赏美丽的光环、绽放的向日葵等)师:圆美吗?生:美!师:难怪古希腊有位数学家说:“在一切平面图形中,圆是最美的。”师:圆看似简单其实一点也又不简单!在圆里,还隐藏着许多数学知识!三、圆的各部分名称与圆的特征 师:在这个圆里,中间的这个点叫圆心,用字母 0 表示,你还知道哪些数学知识?生:半径。师:能上来画
5、一条半径吗?(生上来画半径)还有哪些知识?生:直径 d。师:请你也上来画一条,好吗?(生上来画直径)师:用自己的话说一说什么是半径?生:圆心到圆边的线段。师:圆边在数学上叫做圆上。那什么叫做直径呢?生:路过圆心,两个端点在圆上的线段叫直径。师:这只是我们感性的认识,要想得到更科学的概念,我们还得请教书本。(自学书本第 135 页找到半径与直径的概念,并读一读。)师:半径是连接圆心到原上任意一点的线段,这“任意一点”你是怎么理解的?生:就是随便哪一点都可以,圆上有无数个点,取一个点就可以。师:现在请你在自己的圆内标出圆心,并画一条半径。师:你还能画多少条半径(继续画)?画的完吗?生:画不完,有无
6、数条?师:你是怎么想的?生:因为圆上有无数个点,都可以连接圆心成为半径,所以有无数条半径。师:量一量这些半径的长度,相等吗?生:半径长度都相等,都是 3 厘米 师:你量了几条半径?生:我量了 2 条。师:凭什么说半径长度都相等。生:我们可以通过测量半径是 3 厘米,而刚才的游戏规则就是要求每个点到到圆心的距离是 3 厘米。生:我还可以用圆规来量(用圆规在圆上走一圈),两脚的距离没有变,所以说半径都相等。师:掌声还在等什么?(众生鼓掌)师:现在我们已经研究了半径的特征,现在可否想象一下直径有多少条,长度都相等吗?生:直径也有无数条,长度都相等。师:直径有无数条,我们可以借助半径有无数条类比推理。
7、那么直径长度都相等,你是怎么知道的呢?生:可以借助测量半径的经验,测的所有直径的长度都是 6 厘米。生:还可以看出直径是半径的两倍,半径都相等,直径肯定都相等。师:直径是半径的 2 倍,你是怎么知道的?生:直径可以分成 2 条半径呀?师:真不错,半径和直径的关系的秘密竟一眼被你看出来了。不过呆会儿我们还要用多种方法来证明。(半径与直径的辨析练习。教师适时点出圆内、圆外、圆上等名词)师:拿出圆形纸片,怎样可以找到圆心的位置?(学生操作,指导)师:这个同学用眼自信的找到了圆心,你们觉得对吗?生:一看就知道圆心位置找偏了。师:那该用什么方法来确定圆心的位置?生:对折再对折的方法可以找到圆心。师:所以
8、我们还需要用更方便、更科学的方法寻找圆心。师:同桌合作,通过折一折、量一量、比一比的方法研究圆的半径与直径的关系?并说明你是用什么方法来证明?生:我是量一量的方法,半径是 3 厘米,直径 6 厘米,所以直径是半径的倍。师:用测量法证明,直径是半径的 2 倍,还可以说半径是直径的二分之一。生:比一比的方法,一条直径可以看成 2 条半径,所以直径是半径的倍。师:用观察法证明,很不错。还有其他方法吗?生:我是用折一折的方法,对折以后有一条直径,再对折变成了 2 条半径,所以直径是半径的 2 倍。师:太了不起了,如此抽象的数学知识,在你们的手里竟如此简单地迎刃而解了。师:难道圆规仅仅只能画半径是 3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 认识 教学 案例 反思 剖析
限制150内