2023年数列求和方法全面汇总归纳.pdf
《2023年数列求和方法全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年数列求和方法全面汇总归纳.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数列的求和 一、教学目标:1熟练掌握等差数列与等比数列的求和公式;2能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算;3熟记一些常用的数列的和的公式 二、教学重点:特殊数列求和的方法 三、教学过程:(一)主要知识:1直接法:即直接用等差、等比数列的求和公式求和。(1)等差数列的求和公式:dnnnaaanSnn2)1(2)(11 (2)等比数列的求和公式)1(1)1()1(11qqqaqnaSnn(切记:公比含字母时一定要讨论)2公式法:222221(1)(21)1236nkn nnkn L 2333331(1)1232nkn nkn L 3错位相减法:比如.,2211的和求等比等
2、差nnnnbabababa 4裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。常见拆项公式:111)1(1nnnn ;11 11()(2)22n nnn )121121(21)12)(12(1nnnn !)!1(!nnnn 5分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。6合并求和法:如求22222212979899100的和。7倒序相加法:8其它求和法:如归纳猜想法,奇偶法等(二)主要方法:1求数列的和注意方法的选取:关键是看数列的通项公式;2求和过程中注意分类讨论思想的运用;3转化思想的运用;(三)例题分析:例 1求和:个nnS111111111 2
3、2222)1()1()1(nnnxxxxxxS 求数列 1,3+4,5+6+7,7+8+9+10,前n 项和nS 思路分析:通过分组,直接用公式求和。解:)110(9110101011112kkkka个)101010(91)110()110()110(9122nSnnn81109109)110(10911nnnn)21()21()21(224422nnnxxxxxxS nxxxxxxnn2)111()(242242(1)当1x时,nxxxxnxxxxxxSnnnnnn2)1()1)(1(21)1(1)1(22222222222(2)当nSxn4,1 时 kkkkkkkkkkak23252)23
4、()12()1()12()12(2)12(2 2)1(236)12)(1(25)21(23)21(2522221nnnnnnnaaaSnn)25)(1(61nnn 总结:运用等比数列前 n 项和公式时,要注意公比11qq或讨论。2错位相减法求和 例 2已知数列)0()12(,5,3,112aanaan,求前 n 项和。思路分析:已知数列各项是等差数列 1,3,5,2n-1与等比数列120,naaaa对应项积,可用错位相减法求和。解:1)12(53112nnanaaS 2)12(5332nnanaaaaS nnnanaaaaSa)12(22221)1(:21132 当nnnnaaaSaa)12(
5、)1()1(21)1(,121时 21)1()12()12(1aananaSnnn 当2,1nSan时 3.裂项相消法求和 例 3.求和)12)(12()2(534312222nnnSn 思路分析:分式求和可用裂项相消法求和.解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22kkkkkkkkkkak 12)1(2)1211(21)121121()5131()311(2121nnnnnnnnaaaSnn练习:求nnanaaaS32321 答案:)1()1()1()1()1(2)1(2aaaanaaannSnnn 4.倒序相加法求和 例 4 求证:n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 数列 求和 方法 全面 汇总 归纳
限制150内