2023年数列题型及解题方法全面汇总归纳全面汇总归纳2.pdf
《2023年数列题型及解题方法全面汇总归纳全面汇总归纳2.pdf》由会员分享,可在线阅读,更多相关《2023年数列题型及解题方法全面汇总归纳全面汇总归纳2.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文德教育 1 知识框架 111111(2)(2)(1)(1)()22()nnnnnnmpqnnnnaq naaa qaad naandnn nSaanadaaaamnpq 两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()nnnnmpqaa qaqqqqSnaqa aa amnpq 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他 掌握了数列的基
2、本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。一、典型题的技巧解法 1、求通项公式(1)观察法。(2)由递推公式求通项。对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。(1)递推式为 an+1=an+d 及 an+1=qan(d,q 为常数)例 1、已知an满足 an+1=an+2,而且 a1=1。求 an。例 1、解 an+1-an=2 为常数 an是首项为 1,公差为 2 的等差数列 an=1+2(n-1)即 an=2n-1 例 2、已知na满足112nna
3、a,而12a,求na=?(2)递推式为 an+1=an+f(n)例 3、已知na中112a,12141nnaan,求na.解:由已知可知)12)(12(11nnaann)121121(21nn 令 n=1,2,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+(an-an-1)文德教育 2 2434)1211(211nnnaan 说明 只要和 f(1)+f(2)+f(n-1)是可求的,就可以由an+1=an+f(n)以 n=1,2,(n-1)代入,可得 n-1 个等式累加而求 an。(3)递推式为 an+1=pan+q(p,q 为常数)例 4、na中,11a,对于 n1
4、(nN)有132nnaa,求na.解法一:由已知递推式得 an+1=3an+2,an=3an-1+2。两式相减:an+1-an=3(an-an-1)因此数列an+1-an是公比为 3 的等比数列,其首项为 a2-a1=(31+2)-1=4 an+1-an=43n-1 an+1=3an+2 3an+2-an=43n-1 即 an=23n-1-1 解法二:上法得an+1-an是公比为 3 的等比数列,于是有:a2-a1=4,a3-a2=4 3,a4-a3=432,an-an-1=43n-2,把n-1个等式累加得:an=23n-1-1 (4)递推式为 an+1=p an+q n(p,q 为常数))(
5、3211nnnnbbbb 由上题的解法,得:nnb)32(23 nnnnnba)31(2)21(32 (5)递推式为21nnnapaqa 思路:设21nnnapaqa,可以变形为:211()nnnnaaaa,想 于是an+1-an是公比为的等比数列,就转化为前面的类型。求na。文德教育 3 (6)递推式为 Sn与 an的关系式 关系;(2)试用 n 表示 an。)2121()(1211nnnnnnaaSS 11121nnnnaaa nnnaa21211 上式两边同乘以 2n+1得 2n+1an+1=2nan+2 则2nan是公差为 2 的等差数列。2nan=2+(n-1)2=2n 数列求和的常
6、用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。2、错项相减法:适用于差比数列(如果na等差,nb等比,那么 n na b叫做差比数列)即把每一项都乘以nb的公比q,向后错一项,再对应同次项相减,转化为等比数列求和。3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于数列11nnaa和11nnaa(其中na等差)可 裂 项 为:111111()nnnnaad aa,1111()nnnnaadaa 等差数列前n项和的最值问题:文德教育 4 1、若等差数列na的首项10a,公差0d,则前n项和nS有最大值。()若已知通项na,则nS
7、最大100nnaa;()若已知2nSpnqn,则当n取最靠近2qp的非零自然数时nS最大;2、若等差数列na的首项10a,公差0d,则前n项和nS有最小值()若已知通项na,则nS最小100nnaa;()若已知2nSpnqn,则当n取最靠近2qp的非零自然数时nS最小;数列通项的求法:公式法:等差数列通项公式;等比数列通项公式。已 知nS(即12()naaaf n L)求na,用 作 差 法:11,(1),(2)nnnSnaSSn。已知12()na aaf nggL g求na,用作商法:(1),(1)(),(2)(1)nfnf nanf n。已知条件中既有nS还有na,有时先求nS,再求na;
8、有时也可直接求na。若1()nnaaf n求na用累加法:11221()()()nnnnnaaaaaaa L 1a(2)n。已知1()nnaf na求na,用累乘法:121121nnnnnaaaaaaaa L(2)n。已知递推关系求na,用构造法(构造等差、等比数列)。特别地,(1)形如1nnakab、1nnnakab(,k b为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求na;形如1nnnakak的递推数列都可以除以nk得到一个等差数列后,再求na。(2)形如11nnnaakab的递推数列都可以用倒数法求通项。(3)形如1knnaa的递推数列都可以用对数法求通项。(7)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 数列 题型 解题 方法 全面 汇总 归纳
限制150内