浅谈高等数学在中学数学中的应用大学论文.doc
《浅谈高等数学在中学数学中的应用大学论文.doc》由会员分享,可在线阅读,更多相关《浅谈高等数学在中学数学中的应用大学论文.doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、浅谈高等数学在中学数学中的应用摘要 本文探讨了初等数学和高等数学在知识体系上的差别以及应用上的联系,同时也探讨了他们地位上的差别和各自的重要性。通过讨论可以得知,高等数学在很大程度上是初等数学的扩展。本文第三部分重点介绍了微积分,不等式,行列式,以及高等几何等在初等数学中的应用,探讨了应用高等数学的思想方法解决初等数学的有关问题。另外还探讨了高等数学在高考试题上体现的情况和如何解决相应的问题。关键词 高等数学 中学数学 微积分 行列式 Abstract This study of elementary mathematics and higher mathematics in knowledg
2、e on the difference between system and application links, also discussed their differences on the status and importance of each. Through discussion can see that higher mathematics is to a large extent is an extension of elementary mathematics. This article focuses on the second part of calculus, ine
3、quality, determinants, as well as the application of higher geometry in elementary mathematics, explored the application of higher mathematics thought method to solve problems of elementary mathematics. Discussion also reflected on the college entrance examination in higher mathematics and how to so
4、lve the problemKey words advanced mathematics Mathematics calculusI 目录 摘要IAbstractII第一章 前言11.1 研究背景11.2 课题研究意义11.3 文献综述21.4 研究方法21.5 创新之处2第二章 高等数学与初等数学的地位与联系32.1 初等数学与高等数学的定位32.2 高等数学与中学数学的联系42.2.1 中学数学与大学数学的统一性42.2.2 中学数学与大学数学的连贯性42.3 高等数学对初等数学的拓展52.3.1 代数方面52.3.2 几何方面6第三章 高等数学在初等数学中的应用83.1 高等代数在中学
5、数学中的应用83.2.1 行列式的应用83.2.2 柯西施瓦兹不等式应用93.2 微积分方法在中学数学的应用93.2.1 微积分方法在求函数的极值、最值中的应用93.2.2 用微积分知识直接用来处理初等数学的问题而达到简便的目的103.2.3 积分在空间立体体积与表面积中的应用123.2.4 积分在求曲线弧长中的应用133.3 高等几何在初等几何的应用143.3.1 仿射变换的应用143.3.2 射影几何观点在初等几何中的应用143.3.2.1 仿射变换的应用153.3.2.2 笛沙格定理的应用163.3.2.3 点列中四点的交比163.3.2.4 线束中四条直线的交比的应用18第四章 高考试
6、题中的微积分在解题中的应用204.1 拉格朗日中值定理204.2 有关级数的应用23总结26参考文献27致谢28第一章 前言第一章 前言1.1研究背景二十一世纪科学技术与社会经济正在快速发展。这就需要初等教育为高等院校输送大批具有综合素质的创新型人才,最终培养成为社会需要的各级各类人才。数学教育从教学思想、教学内容、课程设置、教学方法和教学手段方面都需要进行一系列的改革试验随着新课程改革的不断进行,高中数学把多科数学内容综合为一门数学教材,注意沟通各科知识之间的内在联系,注意数学知识的实际应用。教学中,要求体现数学的人文价值和科学价值,注重数学应用意识的培养。新课程内容的变化,无论是新增内容,
7、还是要求处理形式、侧重点上有变化的内容都需要教师认真理解,仔细分析。数学教育现代化要求把中学数学教学建立在现代数学的思想基础上,这使得高等数学与中学数学互相促进,共同发展。有许多中学数学的概念都需要借助高等数学的知识才能解释清楚。1.2 课题研究意义随着高等数学的知识在高考所占的比重也越来越大,研究新的课程标准、新的考试大纲,认真研究、分析高中数学中的新知识高等数学在中学数学中的应用问题变得势在必行。高等数学是在初等数学的基础上发展起来的。与初等数学有着紧密的联系。许多初等数学无法解答的问题,高等数学都给出了解答。因此,帮助学生学会用高等数学的思想、方法为工具,从不同的角度去研究初等数学的问题
8、,而且运用高等数学的知识,从另一更高的角度重新认识初等数学中重要的概念、理论实质及其背景,还可以借助于高等数学的方法来统一处理和解决初等数学中一些或一类问题等等。总之应用高等数学的方法使学生对初等数学的本质,以及与高等数学之间的内在联系,有了深刻的认识。 本论文在借鉴前人所撰文章的精神的基础之上,与中学数学同行们互相交流,对指导教学,指明方向、深度有重大的参考和借鉴价值。本文运用高等数学的先进观点居高临下地分析和处理中学数学内容的问题。主要表现为以下三个方面:一是将高等数学的思想和办法渗透到中学数学中去;二是用具体材料来说明高等数学对中学数学的指导意义:三是指出中学数学某些难以处理的问题的高等
9、数学背景。1.3 文献综述 文献5例谈导数的应用是鄢尧发所编写, 这文章是备受广大师生青睐,主要用众多例题介绍导数,通过把导数与实际应用结合起来,以及用了很多方法,去介绍导数的应用。充分展现导数思想在解决问题的重要性,我在这本参考书上,主要是参考了导数在求极值的应用这部分。不过这本书在介绍导数这方面的知识与我所讨论的问题有很大的区别,因此我在自己电脑的网站,找一些相关资料作为补充。 文献6导数在证明不等式中的应用,本文章是刘伟的报告,本报告主要就讨论一个任务,导数在不等式中的应用。主要把不等式构造成一个函数,再通过函数求导,找函数的单调性,这样就可以证明不等式的成立。另外还利用导数证明几个特殊
10、的不等式。考虑到微积分正是大学数学知识的基础也是中学数学导数应用的一个延生,借鉴此文章是势在必行的。但由于此文章讲述的比较复杂,我只借鉴构造函数这一部分。文献7 - 数学分析(第三版)是华东师范大学数学系所编也是高等教育出版社出版的大学数学专业学生必修的一本教科书,本书分为两本主要详细讲了极限和连续函数,微积分,实数完备性等知识点。就是通过这本书,我才能清楚的认识整个微积分与中学数学之间的紧密联系,也是通过这道本书我才能认识到高等数学的主要思想基础的所在。1.4 研究方法到书店、图书馆、上网搜集大量相关的资料,并参考其他研究人员就此问题做过的相关研究资料,再结合自己的见解分析,总结最后撰写论文
11、1.5 创新之处 1、本论文在更具体的理论结合实际上探讨了高等数学和初等数学的联系 2、本论文更全面的叙述了高等数学在初等数学中的应用 3、这次课标新改后,比较深入的讲述高考数学试题应用高等数学思想方法的论文1 第二章 高等数学与初等数学的地位与联系第二章 高等数学与初等数学的地位与联系 大量的事实表明,通过高初结合可以更好地把握数学知识的深度,了解数学问题的背景和实质,能够从更高的角度俯瞰初等数学及其教学,可以提高数学教师的数学素质和数学解题能力,更好地把握初等数学教学。高等数学知识在开阔中学教师的视野、指导中学数学解题等方面都有很大的作用。欲穷千里目,更上一层楼。站在高等数学的角度来看初等
12、数学中的某些问题会更深刻、更全面。我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别。正是如此,有人认为:学生不需要懂得什么高等数学知识,教师只要照课本讲下去就可以了。其实这是一种误解。诚然,在课堂上不能把高等数学知识传授给学生,但我们仅仅停留在课本上是不够的,有时甚至连自己对一些初等数学的问题也可能感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得澄清.因此,高等数学在初等数学中的作用不能掉以轻心,下面谈谈一些初浅的体会。2.1初等数学与高等数学的定位一般来说,数学史学家把数学的发展分为四个阶段:萌芽时
13、期、初等数学时期、古典高等数学时期、现代高等数学时期(或五个时期,再加上当代时期)。无论何种分发,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”。理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分发:所谓初等数学是指常量数学,高等数学就是指变量数学,并把笛卡尔(R.Descartes)1637年发表的解析几何看成为出现高等数学或进入高等数学时期的标志。而教育意义下的初等数学高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中
14、、小教育)阶段的数学主要内容为初等数学,视初等教育阶段的数学主要内容为初等数学,视高等教育的数学主要内容为高等数学。当然,由于社会和教育的思想、方法、手段尤其是教育内容都在不断发展,“初等数学”和“高等数学”也是一个变化的客体对象,两者没有严格的概念区别。事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点2.2 高等数学与中学数学的联系中学数学主要是常量数学,同时也包括变量数学的一些初步知识,而现代数学则以变项包括变量为研究对象来反映现实世界的空间形式与数量关系。 数学的发展是一个不
15、断发现、不断统一、不断深化的过程。作为一名即将成为教师的学生应该尽可能地把握数学发展的过程,清楚地认识大学数学的学习对中学数学学习的意义,有意识地把它贯穿到今后的中学数学教学中,做到既知其然,又知其所以然。2.2.1 中学数学与大学数学的统一性伽利略曾说过:“大自然是一本书,而这本书的语言是用数学来书写的。”数学作为众多自然学科的基础,博大精深,体系庞大,分支众多拥有着丰富的交叉学科,而如此庞大的学科内部却有着高度的统一性,这种统一性决不是一种偶然的巧合,它反映了数学的本质,数学的统一性在数学各个分支之间比比皆是,它始终贯穿于数学的整个学习过程,表现在一些具体的实例上。中学阶段最能体现数学统一
16、性思想的就是解析几何,笛卡尔坐标系把代数方程与圆锥曲线完美地结合在一起。而高等数学则更是从各方面体现着数学统一性思想。正如M阿蒂亚所说:“数学最使我着迷之处,是不同的分支之间有着许许多多的相互影响,预想不到的联系,惊人的奇迹。”2.2.2 中学数学与大学数学的连贯性 初等数学是高等数学基础,二者有着本质的联系。中学数学中遗留下来相当多的问题并不是它本身可以解决的,必须进一步学习了高等数学,掌握了更多的理论工具,对问题的本质有了更深的认识后才能作出一定合理的解释。 例如大家熟知的代数基本定理:具有复系数的一个多项式方程在复数域中至少有一个解。在中学阶段是当作既成事实,但它究竟对不对,如何去证明,
17、用中学阶段的数学知识是无法解释的。自从高斯给这一基本定理作出了证明以后,在高等数学中又给出了多种多样的证法,可以用复变函数、代数拓扑、数理逻辑等不同的知识来加以证明。 但所有这些证明都需要用到函数的连续性,对函数连续性本质的认识属于现代数学的范畴。 数学的研究方法与对象反复经历了由特殊到一般,由直观到抽象的过程.著名数学家M阿蒂亚说:“没有这些抽象概念,数学恐怕早就被成堆的复杂问题压得喘不过气来,也早就分裂成数不清的,互不关连的个别情况的研究了。 ”。中学生对运算的认识是从“数”的运算开始,随着学习的逐步深入,知道运算不仅仅局限于“数”,“式”也可以进行运算,这说明运算不仅可以在数之间进行,而
18、且可以在数以外的其他对象之间进行。一般运算的对象可以是抽象的集合。一般运算的概念是指一个或几个集合到一个集合的映射。代数是在几个集合上赋予若干运算所形成的结构。最初的代数就是抽象化的,用符号代表数或其他更复杂的量;而更高层次的抽象是符号之间的运算法则和相互关系。 抽象概念正是对层出不穷的新事物的要求所做出的自然的回答。2.3 高等数学对初等数学的拓展2.3.1代数方面集合:众所周知,集合论是现代数学的基础,集合概念是数学中的一个原始概念。中小学数学中都贯穿了集合的思想,高中开始使用集合语言来研究问题,通过高中的学习,对集合的表示、集合之间的简单运算应该比较熟悉,对集合与集合之间的映射等有所了解
19、。高等数学将在此基础上进一步考虑集合的运算,引入集合的“势”的概念,比较两个无穷集合的大小以及赋予集合某些数学结构(如代数结构、测度结构、拓扑),研究具有不同数学结构集合之间的映射关系。如近世代数主要是研究具有代数结构集合之间的映射,如同态、同构、群、环、域等;而实变函数论主要是研究具有勒贝格测度的集合之间的映射,如可测函数。 函数及其性质:函数是数学上的一个基本而又重要的概念,从中学数学到高等数学,函数概念逐步从直观向抽象发展、变量说、对应说(映射说),关系说是三种主要的定义方式。用“关系”来定义函数,比较抽象,一般不容易理解,在现代数学(如拓扑学、泛函分析等)中使用较多。对应说(映射说)是
20、中学数学及一般高等数学中普遍采用的方式。映射是现代数学中的一个基本概念,它贯穿于现代数学各个分支,函数,变换等都是映射的例子。 中学数学中所讲的函数主要是六种基本初等函数:常值函数、幂函数、指数函数、对数函数、三角函数、反三角函数,研究它们的结构与形态。高等数学在此基础上定义了复合函数,初等函数等概念,使函数的量进一步扩展,进一步研究一般函数的奇偶性,单调性(用导数方法判断可导函数的单调性)、周期性(给出周期函数的一般定义以求周期的方法)、有界性、极值性(用导数方法求极值)、连续性、可导性、可积性、以及多项式函数的理论。由于现实中应用的许多函数都是初等函数,而初等函数又具有较好的分析性质,因而
21、常成为研究抽象函数的例子、模型。微积分中函数的主体是初等函数,由基本初等函数到初等函数,衔接是比较紧密的。 数列、极限与级数:中学数学中讲到数列的定义,等差、等比数列以及它们的前n项的和与数列极限,这是数学分析中级数论的基础。极限法是数学分析的一个主要方法,贯穿于数学分析的始终。中学数学中再给极限精确的定量定义。级数论中将研究无穷数列与函数列的和(级数)的收敛与发散,部分数列和的求法,以及函数级数的和函数的分析性质,把函数展成级数等。 复数与复变函数论:中学数学中讲了复数的概念、表示法(代数形式、向量形式、三角形式)、运算。复数的引进,完满的证明了高等代数的基本定理及多元二次型的分解等。另外,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浅谈 高等数学 中学数学 中的 应用 大学 论文
限制150内