《角形全等的判定SSS(meng).ppt》由会员分享,可在线阅读,更多相关《角形全等的判定SSS(meng).ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.2 11.2 三角形全等的判定三角形全等的判定(一一)BCAEFABCDEF 1、什么叫全等三角形?什么叫全等三角形?能够重合的两个三角形叫能够重合的两个三角形叫 全等三角形。全等三角形。2、已知已知ABC DEF,找出其中相等的边与角,找出其中相等的边与角AB=DE CA=FD BC=EF A=D B=E C=FABCDEFAB=DE CA=FD BC=EF A=D B=E C=F1.满足满足这六个条件可以保证这六个条件可以保证ABC DEF吗?吗?2.如果只满足这些条件中的一部分如果只满足这些条件中的一部分,那么能保证那么能保证ABC DEF吗吗?思考:思考:1.只给一条边时;只给一
2、条边时;331.只给一个条件只给一个条件452.只给一个角时;只给一个角时;45结论结论:只有一条边或一个角对应相等只有一条边或一个角对应相等的的两个三角形不一定全等两个三角形不一定全等.两边;两边;两角。两角。一边一角;一边一角;2.如果满足如果满足两个两个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?如果三角形的两边分别为如果三角形的两边分别为4cm4cm,6cm 6cm 时时6cm6cm4cm4cm结论结论:两条边对应相等的两条边对应相等的两个三角形不一定全等两个三角形不一定全等.三角形的一条边为三角形的一条边为4cm,一个内角为一个内角为30时时:4cm4cm30
3、30结论结论:一条边一个角对应相等的一条边一个角对应相等的两个两个三角形不一定全等三角形不一定全等.45304530如果三角形的两个内角分别是如果三角形的两个内角分别是3030,4545时时结论结论:两个角对应相等的两个角对应相等的两个三角形不一定全等两个三角形不一定全等.根据三角形的内角和为根据三角形的内角和为180180度,则第三角一定确定,度,则第三角一定确定,所以当三内角对应相等时,两个三角形不一定全等所以当三内角对应相等时,两个三角形不一定全等两个条件两个条件两角;两角;两边;两边;一边一角一边一角。结论:只给出一个或两个结论:只给出一个或两个条件时,都不能保证所画条件时,都不能保证
4、所画的三角形一定全等。的三角形一定全等。一个条件一个条件一角;一角;一边;一边;三角三角;三边;三边;两边一角;两边一角;两角一边。两角一边。3.如果满足如果满足三个三个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?探索三角形全等的条件探索三角形全等的条件已知两个三角形的三个内角分别为已知两个三角形的三个内角分别为3030,60 60,90 90 它们一定全等吗?它们一定全等吗?这说明有三个角对应相等的两个三角形这说明有三个角对应相等的两个三角形不一定全等不一定全等三个角三个角已知两个三角形的三条边都分别为已知两个三角形的三条边都分别为3cm3cm、4cm4cm、6cm
5、6cm。它们一定全等吗?。它们一定全等吗?3cm4cm6cm4cm6cm3cm6cm4cm3cm三条边三条边先任意画出一个先任意画出一个ABC,再画出一个,再画出一个ABC,使使AB=AB,BC=BC,A C=AC.把把画画好好ABC的的剪剪下,放到下,放到ABC上,他们全等吗?上,他们全等吗?画法画法:1.画线段画线段 BC=BC;2.分别以分别以 B ,C为圆心为圆心,BA,BC为半径画弧为半径画弧,两两弧交于点弧交于点A;3.连接线段连接线段 AB,AC.上述结论反映了什么规律?上述结论反映了什么规律?三边对应相等的两个三角形全等。三边对应相等的两个三角形全等。简写为简写为“边边边边边边
6、”或或“SSSSSS”边边边公理:边边边公理:注:注:这个定理说明,只要三角形的这个定理说明,只要三角形的三边的长度确定了,这个三角形的形状三边的长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具和大小就完全确定了,这也是三角形具有有稳定性稳定性的原理。的原理。如如何何用用符符号号语语言言来来表表达达呢呢?在在ABC与与DEF中中ABCDEFAB=DE()AC=DF()BC=EF()ABCDEF(SSS)判判断断两两个个三三角角形形全全等等的的推推理理过过程程,叫叫做做证证明明三三角角形形全全等等。ACBD证明:证明:D是是BC的中点的中点 BD=CD例例1 如图如图,ABC是一个
7、钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架,求证:的支架,求证:ABDACD在在ABD与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABDACD(SSS)从该例题我们学到了哪些?1 1、证明三角形全等的思路证明三角形全等的思路:在证明之前应先观察证明:在证明之前应先观察证明条件是否齐全,若不齐全应先证明予以补齐,然后证明条件是否齐全,若不齐全应先证明予以补齐,然后证明两三角形全等。两三角形全等。2 2、“公共边相等公共边相等”在证明时可作已知条件直接使用在证明时可作已知条件直接使用3 3、条件齐全后证明的、条件齐全
8、后证明的符号语言符号语言规范写法规范写法在在ABD与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABDACD(SSS)ACBD如图如图,ABC是一个钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架,的支架,变式变式1 1 求证:求证:B=CB=C变式变式2 2 求证:求证:ADAD BCBC变式变式3 3 求证:求证:ADAD平分平分BACBACACBD证明:证明:D是是BC的中点的中点 BD=CD如图如图,ABC是一个钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架,求证:的支架,求证:在在AB
9、D与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABDACD(SSS)B=CB=CADAD BCBCADAD平分平分BACBACB=CADB=ADCADB+ADC=180ADC=90 AD BCBAD=CAD AD平分平分BACBCBCCBCB DCBBF=CDABCD1 1、填空题:、填空题:解:解:ABC DCB理由如下:理由如下:AB=DCAC=DB=ABC ()SSS SSS (1 1)如图,)如图,AB=DCAB=DC,AC=DBAC=DB,ABCABC和和DCBDCB是否全等?试说明理由。是否全等?试说明理由。(2 2)如图,)如图
10、,D D、F F是线段是线段BCBC上的两点,上的两点,AB=ECAB=EC,AF=EDAF=ED,要使,要使ABFECD ABFECD,还需要条件还需要条件 AE B D F CB D F C=或或 BD=CF图图12.2.练习:已知:如图练习:已知:如图1 1,AC=FEAC=FE,AD=FB,BC=DEAD=FB,BC=DE求证:求证:ABCFDE ABCFDE 证明:证明:AD=FBAD=FB AB=FD AB=FD(等式性质)(等式性质)在在ABCABC和和FDE FDE 中中AC=FEAC=FE(已知)(已知)BC=DEBC=DE(已(已知知)AB=FDAB=FD(已证)(已证)A
11、BCFDEABCFDE(SSSSSS)(2)(2)求证:求证:C=E C=E,AcEDBF=?。(2)ABCFDE(已证)(已证)C=E(全等三角形的对应角相等)(全等三角形的对应角相等)(3 3)求证:)求证:ACEFACEF;DEBCDEBC1.边边边公理:有三边对应相等的两个三角形全等 简写成“边边边”(SSS)2.2.边边边公理发现过程中用到的数学方法(包边边边公理发现过程中用到的数学方法(包括画图、猜想、分析、归纳等括画图、猜想、分析、归纳等.).)3.3.边边边公理在应用中用到的数学方法边边边公理在应用中用到的数学方法:证明线段证明线段(或角或角)相等相等 转转 化化 证明线段证明
12、线段(或角或角)所所在的两个三角形全等在的两个三角形全等.两个三角形全等的注意点:两个三角形全等的注意点:1.1.说明两三角形全等所需的条件应按对应边的顺序书写说明两三角形全等所需的条件应按对应边的顺序书写.2.2.结论中所出现的边必须在所证明的两个三角形中结论中所出现的边必须在所证明的两个三角形中.小结小结:3.有时需添辅助线有时需添辅助线(如如:造公共边造公共边)思考:已知思考:已知:如图,如图,AB=AC,DB=DC,AB=AC,DB=DC,请说明请说明B=CB=C成立的理由成立的理由ABCD在在ABDABD和和ACDACD中,中,AB=AC (已知)已知)DB=DC (已知)(已知)A
13、D=AD (公共边)(公共边)ABDACD (SSS)解:连接解:连接ADAD B=C (全等三角形的对应角相等)全等三角形的对应角相等)已知已知:如图如图,四边形四边形ABCD中,中,AD=CB,AB=CD求证:求证:A C。A C D B分析:要证两角或两线段相等,常先证这两角或两线段分析:要证两角或两线段相等,常先证这两角或两线段所在的两三角形全等,从而需构造全等三角形。所在的两三角形全等,从而需构造全等三角形。构造公共边是常添的辅助线构造公共边是常添的辅助线1234已知:已知:OM=ON,MC=NC,OM=ON,MC=NC,求证:求证:OCOC是是AOBAOB的平分线的平分线.OM=ON()OM=ON()CM=CN()CM=CN()CO=CO()CO=CO()CMOCNO()CMOCNO()MOC=NOCMOC=NOCOCOC是是AOBAOB的平分线的平分线(全等三角形的对应角相等)(全等三角形的对应角相等)已知已知已知已知公共边公共边SSSSSS(角平分线定义)(角平分线定义)证明证明:在在CMOCMO和和CNOCNO中中
限制150内