《材料成型测试技术》课后习题及实验指导书.pdf





《《材料成型测试技术》课后习题及实验指导书.pdf》由会员分享,可在线阅读,更多相关《《材料成型测试技术》课后习题及实验指导书.pdf(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 材料成型测试技术课后习题及实验指导书传感器实验指南 1 实 验 目 录实验一.传感器综合实验(1)实验1 金属箔式应变片一一单臂电桥性能实验.2 实验2 金属箔式应变片一一半桥性能实验.4 实验3金属箔式应变片一一全桥性能实验.5 实验4金属箔式应变片单臂、半桥、全桥性能比较实验.7 实验5 直流应变全桥的应用 电子秤实验.8 实验6 金属箔式应变片一一温度影响实验.9 实验7压阻式压力传感器的压力测量实验.10实验二.传感器综合实验实验8 差动变压器的性能实验.11实验 9差动变压器零点残余电压补偿实验.14实验10差动变压器的应用一 一振动测量实验.15实验三传感器综合实验实验11 电容
2、式传感器的位移特性实验.17实验12直流激励时线性霍尔传感器的位移特性实验.19实验13 交流激励时线性霍尔传感器的位移特性实验.20实验14 压电式传感器测振动实验.21实验 15 电涡流传感器的位移特性实验.23实验16光纤传感器的位移特性实验.24实验四传感器综合实验实验17 温度源的温度控制、调节实验.25实验18PtlOO钳电阻测温特性实验.29实验19Cu50铜电阻测温特性实验31实验20 K热电偶测温特性实验.32实 验21 K热电偶冷端温度补偿实验.342 传感器实验指南实 验 一 金属箔式应变片一一单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和
3、性能。二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:A R/R=K 式中:A R/R为电阻丝电阻相对变化,K为应变灵敏系数,=ZL/L为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥 输 出电压Uol=EK E/4o三、需用器件与单元:主机箱(4V、15V、电压表)、应变式传感器实验模板、托盘、祛码、41位数显万用表(自备)。图1 应变片单臂电桥性能实验安装、接线示意图传感器实验指南
4、 3四、实验步骤:应变传感器实验模板说明:实验模板中的R I、R2、R3、R4为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。1、根据图1(应变式传感器(电子秤传感器)已装于应变传感器模板 o 传感器中4 片应变片和加热电阻已连接在实验模板左上方的R I、R2、R3、R4和加热器上。传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。当传感器托盘支点受压时,R I、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。常态时应变片阻值为350Q,加热丝电阻值为 50 Q左右。)安装接线。2
5、、放大器输出调零:将图1 实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW 4,使电压表显示为零。3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1 接线图)。调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只祛码,读取数显表数值,依次增加祛码和读取相应的数显表值,直到200g(或 500 g)祛码加完。记下实验结果填入表
6、1 画出实验曲线。表 14、根据表1计算系统灵敏度$=/11/A川(A U输出电压变化量,W重量变化量)和非线性误差3,8=A m/yFS X 100%式中A m为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为200g(或500g)。实验完毕,关闭电源。五、思考题:单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应 变 片(3)正、负应变片均可以。4 传感器实验指南实验二金属箔式应变片一半桥性能实验一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线
7、性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2=EK/2o三、需用器件与单元:主机箱、应变式传感器实验模板、托盘、祛码。四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的15v、_L插口与主机箱电源土 15v、,分别相连,再将实验模板中的放大器的两输入口短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW 4,使电压表显示为零。图2应变式传感器半桥接线图2、拆去放大器输入端口的短接线,根据图2
8、接线。注 意R2应 和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器RW 1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只祛码,读取数显表数值,依次增加祛码和读取相应的数显表值,直 到200g(或500 g)祛码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差3。实验完毕,关闭电源。表2传感器实验指南 5 三、思考题:1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对 边(2)邻边。2、桥 路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性
9、(2)应变片应变效应是非线性的(3)调零值不是真正为零。实 验 三 金属箔式应变片一全桥性能实验一、实验目的:了解全桥测量电路的优点。二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R 4,其变化值 R l=R2=R3=R4时,,其桥路输出电压U03=KE。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。三、需用器件和单元:同实验二。四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的15v、_L插口与主机箱电源15v、_L分别相连,再将实验模板中的
10、放大器的两输入口短接(Vi=O);调节放大器的增益电位器RW3大约到中间位置恍逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW 4,使电压表显示为零。6 传感器实验指南图31全桥性能实验接线图2、拆去放大器输入端口的短接线,根据图31 接线。实验方法与实验二相同,将实验数据填入表3 画出实验曲线;进行灵敏度和非线性误差计算。实验完毕,关闭电源。表 3五、思考题:1、测量中,当两组对边(RI、R3为对边)电阻值R 相同时,即 Rl=R3,R2=R 4,而 R1WR2时,是否可以组成全桥:(1)可 以(2)不可以。2
11、 某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图32,如何利用这四片应变片组成电桥,是否需要外加电阻。传感器实验指南 7图3-2 应变式传感器受拉时传感器圆周面展开图实验四金属箔式应变片单臂、半桥、全桥性能比较一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。二、基本原理:如图4(a)、(b)、(c)(a)单臂(b)半桥(c)全桥图4 应变电桥(a)、UO=U一U=(R1+AR1)/(R1+AR1+R2)R4/(R3+R4)E=(1+AR1/R I)/(1+AR1/R1+R2/R2)一(R4/R3)/(1+R 4/R3)E8 传感器实验指南设 R1=R
12、2=R3=R 4,且R 1/R 1 V 1。UO(1/4)(AR1/R1)E所以电桥的电压灵敏度:S=UO/(A R I/R1产kE=(l/4)E(b)、同理:U0-(1/2)(zRl/R)ES=(l/2)E(C)、同理:U O-(RI/R1)ES=E三、需用器件与单元:主机箱、应变传感器实验模板、托盘、硅码。四、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。阐述理由(注意:实验一、二、三中的放大器增益必须相同)。实验完毕,关闭电源。实验五直流全桥的应用一电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。二、基本原理:数字电子秤实验
13、原理如图5,全桥测量原理。本实验只做放大器输出U 0实验,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。图5数字电子称原理框图传感器实验指南 9三、需用器件与单元:主机箱、应变式传感器实验模板、祛码。四、实验步骤:1、实验模板差动放大器调零:将实验模板上的土 15v、_L插口与主机箱电源15v、_L分别相连。用导线将实验模板中的放大器两输入口短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W 4,使
14、电压表显示为零。按图3 1直流全桥接线,合上主机箱电源开关,调节电桥平衡电位R W 1,使数显表显示0.00V。2、将10只祛码全部置于传感器的托盘上,调节电位器RW3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或一0.200V。3、拿去托盘上的所有祛码,调节电位器RW4(零位调节)使数显表显示为O.OOVo4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。成为一台原始的电子秤。5、把祛码依次放在托盘上,并依次记录重量和电压数据填入下表6。6、根据数据画出实验曲线,计算误差与线性度。实验完毕,关闭电源。表6实验六金属箔式应变片的温度影响实验一、
15、实验目的:了解温度对应变片测试系统的影响。二、基本原理:电阻应变片的温度影响,主要来自两个方面。敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致会产生附加应变。因此当温度变化时,在被测体受力状态不变时,输出会有变化。三、需用器件与单元:主机箱、应变传感器实验模板、托盘、硅码、加 热 器(在实验模板上,已粘贴在应变传感器左下角底部)。四、实验步骤:1、按照实验三。2、将200g祛码放在祛码盘上,在数显表上读取数值UO1。3、将主机箱中直流稳压电源+5v、,接于实验模板的加热器+6v、!插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uot,Uot-U01即为温度
16、变化的影响。计算这一温度变化产生的相对误差:10 传感器实验指南实验完毕,关闭电源。??Uot?Uol?100%U01五、思考题:金属箔式应变片温度影响有哪些消除方法?实验七压阻式压力传感器的压力测量实验一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型 或N型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。三、需用器件与单元:主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。四、实验
17、步骤:1、将压力传感器安装在实验模板的支架上,根据图7连接管路和电路(主机箱内的气源部分,压缩泵、贮气箱、流量计已接好)。引压胶管一端插入主机箱面板上气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连。压力传感器引线为4芯线:1端接地线,2端 为U0+,3端接+4 V电源,4端 为U o-,接线见图8。图7 压阻式压力传感器测压实验安装、接线图2、实验模板上RW2用于调节放大器零位,RW1调节放大器增益。按图7将实验模板的放大器输出V02接到主机箱(电压表)的Vin插孔,将主机箱中的显示选择开关拨到2V档,合上主机箱电源开关,RW1旋到
18、满度的1/3位置(即逆时针旋到底再顺时针旋2圈),仔细调节RW2使主机箱电压表显示为零。传感器实验指南113、合上主机箱上的气源开关,启动压缩泵,逆时针旋转转子流量计下端调压阀的旋钮,此时可看到流量计中的滚珠在向上浮起悬于玻璃管中,同时观察气压表和电压表的变化。4、调节流量计旋钮,使气压表显示某一值,观察电压表显示的数值。5、仔细地逐步调节流量计旋钮,使压力在2 18KPa之间变化,每上升IKPa气压分别读取电压表读数,将数值列于表7。表71、画出实验曲线计算本系统的灵敏度和非线性误差。2、如果本实验装置要成为一个压力计,则必须对电路进行标定,方法采用逼近法:输 入4KPa气压,调 节Rw2(
19、低限调节),使电压表显示0.25V(有意偏小),当输入16KPa气压,调 节Rwl(高限调节)使电压表显示1.2V(有意偏小);再调气压为4KPa,调 节Rw2(低限调节),使电压表显示0.3V(有意偏小),调气压为16KPa,调 节Rwl(高限调节)使电压表显示L3V(有意偏小);这个过程反复调节直到逼近自己的要求(4KPa0.4V,16KPa1.6V)即可。实验完毕,关闭电源。实 验 八 差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当差动变压器
20、随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。其输出电势反映出被测体的移动量。三、需用器件与单元:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。四、实验步骤:附:测微头的组成与使用12 传感器实验指南测微头组成和读数如图8-1测微头读数图图8-1 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两
21、排刻度线,标有数字的是整毫米刻线(1m m/格),另一排是半毫米刻线(0.5 m m/格);微分筒前部圆周表面上刻有50等分的刻线(0.0 1 mm/格)。用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,测杆沿轴方向移动微小位移0.0 1毫米,这也叫测微头的分度值。测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图81 甲读数为3.6 7 8 m m,不是3.1 7 8 mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图91 乙已过零则读2.5 1 4 mm;如图81丙未过零
22、,则不应读为2 mm,读数应为 1 .9 8 0 m mo测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到1 0 m m处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。1、将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L2、L3为次级线圈;*号为同名端,如下
23、图8 2。2、按 图82接线,差动变压器的原边L 1的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为45KHz(可用主机箱的频率表输入Fin来监测);调节输出幅度峰峰值为Vp-p=2V(可用示波器监测:X轴 为0.2ms/div)。3、松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形Vp-p为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。这时可以左右位移,假设其中一个方向为正位移,另一传感器实验指南 13个方向位
24、移为负,从Vp-p最小开始旋动测微头的微分筒,每隔(Umm(可 取1025点)从示波器上读出输出电压Vp-p值,填入下表8,再将测位头退回到Vp-p最小处开始反方向做相同的位移实验。在实验过程中请注意:从Vp-p最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。当一个方向行程实验结束,做另一方向时,测微头回到Vp-p最小处时它的位移读数有变化(没有回到原来起始位置)是正常的,做实验时位移取相对变化量4 X为定值,只要中途
25、测微头不回调就不会引起位移误差。图82差动变压器性能实验安装、接线图4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表8画出Vop-pX曲线,作出位移为土 1mm、3mm时的灵敏度和非线性误差。实验完毕,关闭电源。表8五、思考题:1、用差动变压器测量振动频率的上限受什么影响?2、试分析差动变压器与一般电源变压器的异同?14 传感器实验指南实 验 九 差动变压器零点残余电压补偿实验一、实验目的:了解差动变压器零点残余电压补偿方法。二、基本原理:由于差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁 芯B H特性的非线性等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料成型测试技术 材料 成型 测试 技术 课后 习题 实验 指导书

限制150内