2020版高考数学一轮复习 7.2空间点、线、面之间的位置关系精品学案 新人教版.doc
《2020版高考数学一轮复习 7.2空间点、线、面之间的位置关系精品学案 新人教版.doc》由会员分享,可在线阅读,更多相关《2020版高考数学一轮复习 7.2空间点、线、面之间的位置关系精品学案 新人教版.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020版高考数学一轮复习精品学案:第七章 立体几何7.2空间点、线、面之间的位置关系【高考新动向】一、空间点、直线、平面之间的位置关系1、考纲点击(1)理解空间直线、平面位置关系的定义;(2)了解可以作为推理依据的公理和定理;(3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。2、热点提示(1)以空间几何体为载体,考查逻辑推理能力;(2)通过判断位置关系,考查空间想象能力;(3)应用公理、定理证明点共线、线共面等问题;(4)多以选择、填空的形式考查,有时也出现在解答题中。二、直线、平面平行的判定及其性质1、考纲点击(1)以立体几何的定义、公理和定理为出发点,认识和理解
2、空间中线面平行的有关性质与判定定理;(2)能运用公理、定理和已经获得的结论证明一些空间图形的平行关系的简单命题。2、热点提示(1)对线线平行、线面平行和面面平行的考查是高考的热点;(2)平行关系的判断多以选择题和填空题的形式出现,考查对与平行有关的概念、公理、定理、性质、结论的理解和运用,题目难度较小;(3)平行关系的证明及运用,多以解答题的形式出现,主要考查有关定理、性质的运用及各种平行关系的相互转化,题目有一定的综合性,常与垂直的证明、空间角的求法及空间向量结合在一起考查,属低中档题三、直线、平面垂直的判定及其性质1、考纲点击(1)以立体几何的定义、公理和定理为出发点,认识和理解空间中线面
3、垂直的有关性质与判定定理;(2)能运用公理、定理和已经获得的结论证明一些空间图形的垂直关系的简单命题。2、热点提示(1)垂直关系的判断多出现在选择题或填空题中,主要考查对与垂直有关的概念、公理、定理、性质、结论的理解及运用,往往与命题及平行关系综合在一起考查,难度较小;(2)线面垂直、面面垂直的证明及运算常以解答题的形式出现,且常与平行关系综合命题,难度中等;(3)通过线面角、二面角的求解来考查学生的空间想象能力和运算能力,常以解答题的形式出现,难度中等.【考纲全景透析】一、空间点、直线、平面之间的位置关系1、平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;公理
4、2:过不在一条直线上的三点,有且只有一个平面;公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。即:2、直线与直线的位置关系(1)位置关系的分类(2)平行公理和等角定理平行公理:平行于同一条直线的两条直线平行用符号表示:设a,b,c为三条直线,若ab,bc,则ac等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补(3)异面直线所成的角定义:设a,b是两条异面直线,经过空间中任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)范围:3、直线和平面的位置关系位置关系直线a 在平面内直线a与平面相交直线a与平面平行
5、公共点有无数个公共点有且只有一个公共点没有公共点,符号表示图形表示4、两个平面的位置关系位置关系图示表示法公共点个数两平面平行0两平面相交斜交有无数个公共点在一条直线上垂直有无数个公共点在一条直线上5、平行公理平行于同一条直线的两条直线互相平行。(但垂直于同一条直线的两直线的位置关系可能平行,可能相交,也可能异面)6、定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。二、直线、平面平行的判定及其性质1、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线
6、与该直线平行;2、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。注:能否由线线平行得到面面平行?(可以。只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行)三、直线、平面垂直的判定及其性质1、直线与平面垂直(1)定义:如果直线与平面内的任意一条直线都垂直,则直线与平面垂直;(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;2、二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
7、(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。3、平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直;(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直;(2)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。注:垂直于同一平面的两平面是否平行?(可能平行,也可能相交)4、直线和平面所成的角平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角。当直线与平面垂直和平行(含直线在平面内)时,规定直线和平面所成的角分别为900和00。【
8、热点难点全析】一、空间点、直线、平面之间的位置关系(一)异面直线的判定相关链接证明两直线为异面直线的方法:1、定义法(不易操作)2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。此法在异面直线的判定中经常用到。3、客观题中,也可用下述结论:过平面处一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图:例题解析例如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点。问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由。思路解析:(1)易
9、证MN/AC,AM与CN不异面。(2)由图易判断D1B和CC1是异面直线,证明时常用反证法。解答:(1)不是异面直线。理由:连接MN、A1C1、AC。M、N分别是A1B1、B1C1的中点,MN/ A1C1,又A1A CC1,A1ACC1为平行四边形。A1C1/AC,得到MN/AC,A、M、N、C在同一平面内,故AM和CN不是异面直线。(2)是异面直线。证明如下:ABCD-A1B1C1D1是正方体,B、C、C1、D1不共面。假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,D1、B、C、C1,与ABCD-A1B1C1D1是正方体矛盾。假设不成立,即D1B与CC1是异面直线(二
10、)平面的基本性质及平行公理的应用相关链接1、平面的基本性质的应用(1)公理1:可用来证明点在平面内或直线在平面内;(2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面;(3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。2、平行公理主要用来证明空间中线线平行。3、公理2的推论:(1)经过一条直线和直线外一点,有且只有一个平面;(2)经过两条相交直线,有且只有一个平面;(3)经过两条平行直线,有且只有一个平面。4、点共线、线共点、点线共面(1)点共线问题证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上。(2)线
11、共点问题证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上。(3)证明点线共面的常用方法纳入平面法:先确定一个平面,再证明有关点、线在此平面内;辅助平面法:先证明有关的点、线确定平面,再证明其余元素确定平面,最后证明平面、重合。例题解析例如图,四边形ABEF和ABCD都是直角梯形,BAD=FAB=900,BCAD,BEFA,G、H分别为FA、FD的中点。(1)证明:四边形BCHG是平行四边形;(2)C、D、F、E四点是否共面?为什么?思路解析:(1)G、H为中点GHAD,又BCAD GHBC;(2)方法一:证明D点在EF、GJ确定的平面内。方法二:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学一轮复习 7.2空间点、线、面之间的位置关系精品学案 新人教版 2020 高考 数学 一轮 复习 7.2 空间 之间 位置 关系 精品 新人
限制150内