英文文献及翻译-纳米二氧化钛掺杂氧化锌的合成、表征、光催化性能研究.doc
《英文文献及翻译-纳米二氧化钛掺杂氧化锌的合成、表征、光催化性能研究.doc》由会员分享,可在线阅读,更多相关《英文文献及翻译-纳米二氧化钛掺杂氧化锌的合成、表征、光催化性能研究.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、外文文献及翻译 纳米二氧化钛掺杂氧化锌的合成、表征、光催化性能研究摘要 在这项研究中,氧化锌掺入纳米二氧化钛合成了水热过程。 在水作为溶剂下用含氧化锌前驱和市售二氧化钛纳米粒(P25)加热在140 C 2 h。利用合成粒子场发射扫描电镜(FE-SEM)、透射电镜(TEM)和x射线衍射(XRD)对材料的形态和结构特征进行测定发现,纳米粒还附加了二氧化钛表面上的氧化锌。 我们注意到,在二氧化钛在热液的解决方案可能纳米粒充分减少的尺寸氧化锌。 复合纳米结构,具有独特的形态,利用这个方便的方法在低的温度,更少的时间,更少数量的试剂时可以获得,而且发现在紫外光照射下光催化剂是有效的。关键词: 纳米复合材
2、料;水热合成;陶瓷氧化物;光催化剂1、介绍 最近的发现了一个在水介质中改进的氧化和催化降解的有机化合物溶解的实验。 光催化,被称为绿色技术,提供了巨大的潜力可以完全消除有毒化学物质在环境中通过其效率和广泛的适用性。 半导体金属氧化物,如二氧化钛、氧化锌、硫化锌、cd、Fe2O3纳米颗粒(NPs)迄今为止,被证明是最有前途的材料在此领域。 在这些半导体金属氧化物、氧化锌,二氧化钛等已经被认为是最出色的材料因其优异的电子、化学、光学特性与高感光度。 然而,电子的速度的洞(e-h)重组在光催化过程限制这些材料的应用在紫外光照射下。此外,纳米粒子(具有高比表面积)被发现是更有效的光催化剂但是复苏从反应
3、体系非常困难,这限制了其应用程序环境(二次污染)、经济(损失催化剂)。 各种已经尝试解决上述缺点。 掺杂进光催化剂的新型金属晶格和耦合半导体是有效的方法来减少在这里组合过程而提供一个固定的表面有足够的表面积(如高分子纳米纤维)增强其耐久性为了重复使用。 我们以前的工作表明Ag加载二氧化钛/尼龙6电纺垫能防止损失和催化剂可反复使用。水晶二氧化钛和氧化锌,不管是在纯粹的形式或作为一个组合,是半导体氧化物广泛用于光催化反应。 原则上,耦合的二氧化钛和氧化锌似乎有用,以实现更有效的e-h对辐射下的分离,因此,更高光降解速率。 一生的增加照片的产生对,由于电子对在二氧化钛和氧化锌之间的转移,在许多情况下
4、,调节的关键因素可以提高光催化活性。 因此,合并成一个综合两种材料的结构最终产品具有重要意义,因为可能会拥有改进的物化性质,这应该在各个领域得到应用。但获得此类结构在纳米尺度内仍然是一个巨大的挑战,因为结构的复杂性和晶体生长的材料是难以控制的。 因此,光催化剂的制备需要合适的技术和试剂是起重要作用的。 已经有了几种方法制造氧化锌和二氧化钛,但这需要高温、长时间,和更多的试剂。 在这里,利用其独特的形状的影响的氧化锌和整合二氧化钛与氧化锌纳米粒子以及催化活性的分层复合纳米结构,我们合成了氧化锌纳米花装饰着二氧化钛纳米粒子在其表面。 本研究的目的是利用水热法可以在很短的时间内以较低的温度制备二氧化
5、钛光催化剂掺杂氧化锌。在这个工作多晶硅制备二氧化钛粉体支撑表面上的氧化锌纳米粒子中获得电子硝酸锌在水热合成技术。 氧化锌不仅仅提升了光催化效率通过阻止重组过程还提供一个固定的位置,可以防止二氧化钛损失在恢复期间的二氧化钛反应体系。 重复使用的降解甲基蓝(MB)的解决方案在紫外线照射下催化活性以及恢复这些样本进行评定。2、 实验过程2.1 光催化剂的制备 利用材料有二氧化钛NPs(80%锐钛矿,20%平均粒径金红石、纳米粒径和比表面积分别是5015 m2gA1),2-六甲基三胺和六水合硝酸锌。 纯氧化锌微粒在水热条件下合成的水性悬挂2-六甲基三胺和硝酸锌的混合物。 0.5 g的2-六甲基三胺溶在
6、50克水和0.75 g六水合硝酸锌溶在50克水中形成胶体,搅拌中装进一聚四氟乙烯为内衬的水热反应釜中。用同样的方法制备增加二氧化钛20毫克的混合复合物。在每组制备中,反应保持在140C, 2 h。所得产品冷却后被过滤掉,蒸馏水和乙醇洗几次,用60C干燥后在12小时前分析。2.2 表征 分别使用FE-SEM、透射电子显微镜(TEM)、XRD对原始氧化锌和二氧化钛/氧化锌纳米复合材料进行测定表征。并取得了高分辨率图像。 TEM用于选定区电子衍射和线EDX复合粒子。信息和结晶度的获得用x射线衍射仪测定。XRD用Cu Ka(l = 1.540 A ),辐射的角度从10到80。 原始氧化锌催化活性性能和
7、氧化锌纳米二氧化钛掺杂用于对染料溶液MB的降解。方法是紫外线灯(l = 365 nm)。 装染料溶液的反应器和紫外灯之间的距离是5厘米。25毫升的染料溶液(10 ppm浓度)和20毫克催化剂混合搅拌。经过15分钟搅拌,开始染料降解试验。 在特定的时间间隔,取1毫升的样本并离心去掉催化剂,然后在对应的波长测定吸光度。 试验结束,通过重复离心剩余混合液和洗涤收集剩下的二氧化钛/氧化锌分。3、 结果和讨论 图片1和2为FE-SEM图像,分别显示了获得了原始氧化锌和纳米氧化锌二氧化钛掺杂形貌的影响。 显然,对(图片1和2),原始氧化锌粒子微观粒子尺度是微米级别的而二氧化钛粒子浸渍氧化锌是纳米大小的,即
8、使他们是相同的水热条件。新增的二氧化钛系统不仅充分降低了大小的锌还依附在氧化锌表面上没有聚合(图2)。当二氧化钛出现在水热系统形成氧化锌的粒子,他们的增长有可能受到阻碍。 超微二氧化钛粉体的分散性含氧化锌在水热的步骤中可以让先驱同时沉积超微二氧化钛粉体表面纳米粒子原位形成了氧化锌粒子。透射电子显微镜(TEM)分析可以用来检查材料的形态以及结晶和无定形的状态。 结构鉴定如图3,a、a和a”所示运算。 TEM图片的低放大率(图3)揭示了一种独特的花形形态,这符合FE-SEM图像(图1)。图3 a显示了高分辨率的TEM图片标明的区域,也表明了同一粒径。图3显示了模式a” SAED的标记面积图3 a,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 英文 文献 翻译 纳米 氧化 掺杂 氧化锌 合成 表征 光催化 性能 研究
限制150内