大学毕业论文-—傅里叶级数与傅里叶变换的关系与应用.doc
《大学毕业论文-—傅里叶级数与傅里叶变换的关系与应用.doc》由会员分享,可在线阅读,更多相关《大学毕业论文-—傅里叶级数与傅里叶变换的关系与应用.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 本 科 生 毕 业 论 文 (申请学士学位)论文题目 傅里叶级数与傅里叶变换的关系与应用 学 生: (签字)学 号:2012220146论文答辩日期:2014年x月xx日指 导 教 师: (签字)目 录摘要:0关键词0Abstract01绪论12傅里叶级数的概念12.1周期函数22.2傅里叶级数的定义23 傅里叶变换的概念及性质103.1傅里叶变换的概念103.2傅立叶变换的性质114傅里叶变换与傅里叶级数之间的区别与联系125傅里叶级数和傅里叶变换的应用125.1傅里叶级数的应用125.2傅里叶变换的应用13参考文献14滁州学院本科毕业论文傅里叶级数与傅里叶变换的关系与应用摘要:傅里叶级数
2、是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series An
3、d Fourier TransformsAbstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very impor
4、tant in the field of signal processing algorithms.Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fouri
5、er transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications.Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal in
6、to a complex signal superposition, similar features.Key words: Fourier series; Fourier Transform; Periodic1绪论傅里叶级数是法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出来的,从而极大的推动了偏微分方程理论的发展,在数学物理以及工程中都具有重要的应用。积分变换起源于19世纪的运算危机,英国著名的无线电工程师海维赛德(O .Heaviside)在用它求解电工学、物理学领域中的线性微分方程的过程中逐步形成一种所谓的符号法,后来符号法又演变成今天的积分变化法。所谓积分变换,就是
7、把某函数类A中的函数乘上一个确定的二元函数,然后计算积分,即这样变成了另一个函数类B中的函数,这里的二元函数是一个确定的二元函数,通常称为该积分变换的核,称为象原函数,称为的象函数,当选取不同的积分域和核函数,就得到不同名称的积分变换。傅里叶级数对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。要想了解傅里叶变换算法的内涵,首先要了解傅里叶原理的内涵。傅里叶原理表明:对于任何连续测量的数字信号,都可以用不同频率的正弦波信号的无限叠加来表示。傅里叶变换是一种分析信号的方法,它可
8、分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 2傅里叶级数的概念2.1周期函数我们把凡是满足以下关系式: (T为常数) (2.1.1)的函数,都称为周期函数。周期定义:(1) 满足式(1.1.1)的T值中的最小正数,即为该函数的周期;(2) 一个常数以任何正数为周期。基本三角函数系:按某一规律确定的函数序列称为函数系。如下形式
9、的函数系: 1, , (2.1.2)称为基本三角函数系。所有这些函数具有各自的周期,例如和的周期为,但它们的共有周期为(即所有周期的最小公倍数)。通常这个周期命名为函数系的周期。所以式(1.1.2)的三角函数系的周期为。2.2傅里叶级数的定义傅里叶级数是一类特殊的函数项级数,对周期性现象进行数学上的分析,其在理论和应用上都有重要价值。2.2.1 三角级数、三角函数及其正交性在物理学中,我们知道,简谐振动是一种简单的周期运动,而在简谐振动中,一种标准而简单的简谐振动可由下面函数描述, (1)我们不难看出,更一般的简谐振动 ,可通过适当的变换为(1),将无穷多个如(1)式那样的简谐振动叠加,便得到
10、函数项级数 (2)如果(2)式收敛到函数,即 (3)则易见是周期为的函数,从的角度看,如果(3)式成立(),则我们便将更一般或更复杂的周期为的函数分解为简单标准的简谐振动的叠加,这对研究的各种性质带来了很大的方便。于是,我们自然提出以下问题:什么条件下我们可以将一个周期为的函数表示成如(1)式那样简单,标准的简谐振动的叠加?即什么条件下(3)式成立?更一般地,什么条件下可以将一个周期为T的函数表示成简谐振动的叠加?设g(t)周期为T,则只要令,就有则周期为,所以我们只要讨论前一个问题就行了。为了数学推导和理论研究方便,我们将级数(2)作如下变形=令 则 =称级数 (4)为三角级数,称级数(4)
11、的部分和 (5)为三角多项式,后面我们将看到,将常数项记为的形式,是为了使有统一的表达式。我们通过简单的计算可知,三角函数系 (6)具有以下性质 (7) (8) (9) (10)即三角函数系(6)中任何两个不同函数的乘积在上积分为0,我们称这一性质为三角函数系(1)的正交性。也称(6)为正三角函数系。从后面的推导我们也看到,三角函数系(6)的正交性在三角级数研究中扮演了重要的角色。另外,我们还有 (11) 2.2.2周期为的函数的傅里叶级数设函数能够表示成三角级数(4),即 (12) 并且(12)式右边级数在上一致收敛,则有如下关系式: , n=0,1,2, (13a) , n=0,1,2,
12、(13b)证明:由定理条件,对(12)式逐项积分可得: = 由关系式知,上式右边括号内的积分都等于零,所以 即得 现以乘(12)式两边(t为正整数),得 (14)由级数(12)一致收敛,可以推出级数(14)也一致收敛。现在对级数(14)逐项求积,有 =由三角函数的正交性,右边除了以为系数的那一项积分外,其他各项积分都等于零,于是得出即同理,(12)式两边乘以,并逐项求积,可得一般的说,若是以为周期且在上可积分的函数,则按公式(13)计算出的和叫做函数的傅里叶级数,记作 这里的“”表示上式右边是左边函数的傅里叶级数。2.2.3周期为的函数的傅里叶级数设是以2为周期的函数,通过变量置换可以把变成以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学毕业 论文 傅里叶 级数 傅里叶变换 关系 应用
限制150内