大学毕业论文-—图像分割算法研究与实现.doc
《大学毕业论文-—图像分割算法研究与实现.doc》由会员分享,可在线阅读,更多相关《大学毕业论文-—图像分割算法研究与实现.doc(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、毕业设计(论文)图像分割算法研究与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校
2、有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,
3、同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日指导教师评阅书指导教师评价:一、撰写(设计)过程1、学生在论文(设计)过程中的治学态度、工作精神 优 良 中 及格 不及格2、学生掌握专业知识、技能的扎实程度 优 良 中 及格 不及格3、学生综合运用所学知识和专业技能分析和解决问题的能力 优 良 中 及格 不及格4、研究方法的科学性;技术线路的可行性;设计方
4、案的合理性 优 良 中 及格 不及格5、完成毕业论文(设计)期间的出勤情况 优 良 中 及格 不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中 及格 不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格 不及格建议成绩: 优 良 中 及格 不及格(在所选等级前的内画“”)指导教师: (签名) 单位: (盖章)
5、年 月 日评阅教师评阅书评阅教师评价:一、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中 及格 不及格二、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格 不及格建议成绩: 优 良 中 及格 不及格(在所选等级前的内画“”)评阅教师: (签名) 单位: (盖章)年 月 日教研室(或答辩小组)及教学系意见教研室(或答辩小组)
6、评价:一、答辩过程1、毕业论文(设计)的基本要点和见解的叙述情况 优 良 中 及格 不及格2、对答辩问题的反应、理解、表达情况 优 良 中 及格 不及格3、学生答辩过程中的精神状态 优 良 中 及格 不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中 及格 不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格
7、不及格评定成绩: 优 良 中 及格 不及格(在所选等级前的内画“”)教研室主任(或答辩小组组长): (签名)年 月 日教学系意见:系主任: (签名)年 月 日图像分割算法研究与实现摘 要数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支,其中最主要的是运用MATLAB对图像进行仿真分割,并用各个方法进行分析、对比并得出结论。本文主要介绍了图像分割的基本知识,从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域生长等进行了分析。在边缘检测时对梯度算法中的Sobel算子、Prewitt算子、LoG(Laplacian-Gauss)算子、Canny算子的分割
8、原理逐一介绍并比较各种算子的分割效果。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,本文着重实现基于迭代法的全局阈值及基于Otsu最大类间方差算法的自适应阈值。此外还介绍了区域增长法,它的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。关键词:图像分割 MATLAB 边缘检测 区域生成 阈值分割Research of Image Segmentation AlgorithmABSTRACTDigital Image Object Segmentation and Extraction is a major conce
9、rn in the field of digital image processing and computer vision research branch, which the most important is the use of MATLAB for image segmentation and simulation, using each method to carry on the analysis, comparison and conclusion. This paper mainly introduces the basic knowledge of image segme
10、ntation, based on the principle and the application effect to the classic image segmentation methods such as edge detection, threshold segmentation and region growing is analyzed. In the edge detection of gradient algorithm in the Sobel operator, Prewitt operator, Log operator, Canny operator segmen
11、tation principles introduced and comparison of various operators segmentation. While the threshold segmentation technology is the key to determine a threshold , only a good threshold can effectively divide object and background, this paper focuses on the implementation of the global threshold based
12、on iterative algorithm and based on Otsu adaptive threshold algorithm. It also introduces the regional growth method, its basic idea is to have similar properties to the pixel together constitute a new area. At the same time the paper also analyzes the research direction of image segmentation techno
13、logy.Key words:Image segmentation MATLAB Edge detection Regional generation Threshold segmentation目 录1 引言11.1 数字图像分割的现状11.2 数字图像分割的意义12 基于MATLAB的图像分割32.1 MATLAB的优点33 图像分割的主要研究方法43.1 图像分割定义43.2 图像分割方法综述43.3 边缘检测法53.3.1 边缘检测原理53.3.2 Canny算子63.3.3 Prewitt 算子73.3.4 Sobel 算子83.3.5 Log算子93.4 区域生长法93.4.1 区
14、域生长原理93.4.2 灰度差准则103.4.3 灰度分布统计准则113.5 阈值分割法113.5.1阈值分割法原理113.5.2 迭代阈值分割123.5.3 Otsu算法(最大类间方差法)134 分割结果与分析154.1边缘检测结果及分析154.1.1 sobel算子分割结果154.1.2 Prewitt算子分割结果164.1.3 Canny算子分割结果174.1.4 Log 算子分割结果174.1.5 边缘检测分割结果比较184.2 区域生长结果与分析184.3 阈值分割结果与分析194.3.1 Otsu算法求自适应阀值结果194.3.2 迭代法求全局阈值194.4 各种图像分割方法的比较
15、205 结论21参考文献22谢 辞23附 录24V1 引言1.1 数字图像分割的现状图像分割技术,是从图像中将某个特定区域与其它部分进行分离并提取出来的处理。图像分割的方法有许多种,有阈值分割方法,边界分割方法,区域提取方法,结合特定理论工具的分割方法等。早在1965年就有人提出检测边缘算子,边缘检测已产生不少经典算法。越来越多的学者开始将数学形态学、模糊理论、遗传算法理论、分形理论和小波变换理论等研究成果运用到图像分割中,产生了结合特定数学方法和针对特殊图像分割的先进图像分割技术。尤其是近年来迅速发展起来的小波理论为图像处理带来了新的理论和方法。小波变换具有良好局部特性,当小波函数尺度较大时
16、,抗噪声的能力强,当小波函数尺度较小时,提取图像细节的能力强,这样就可以很好地解决抑制噪声和提取图像边缘细节之间的矛盾。图像分割来说,如果不利用关于图像或所研究目标的先验知识,任何基于数学工 具的解析方法都很难得到很好的效果。因此,人们倾向于重新设计一个针对具体问题的新算法来解决所而临的图像分割问题。这在只有少量图像样本的时候,利用各种先验知识,设计一个具有针对性的算法进行图像分割是比较容易的。但是当需要构建一些实用的机器视觉系统时,所面临的将是具有一定差异性、数量庞大的图像库,此时如何很好的利用先验知识,设计一个对所有待处理图像都实用的分割算法将是一件非常困难的任务。其次,由于缺乏一个统一的
17、理论作为基础,同时也缺乏对人类视觉系统(human vision system,HVS)机理的深刻认识,构造一种能够成功应用于所有图像的统一的图像分割算法,到目前为止还是难以实现的。1.2 数字图像分割的意义现实生活中在分割一幅图像时,多是依据经验和直觉去选择方法,通过反复实践来找到一种最佳的方法。与计算机科学技术的确定性和准确性相比,图像分割更像是一种艺术行为,有经验的人能比较容易的选用出适当的方法,使不同的图像都得到最佳的分割效果。但是,当要处理的图像十分庞大时,图像分割就像是流水线上的一道简单工序,这种艺术行为就显得无能为力了。随着图像技术和多媒体技术的发展,包括图像、音频和视频等信息的
18、多媒体数据己经广泛用于Internet和企事业信息系统中,而且越来越多 的商业活动、信息表现和事务交易中都将包括多媒体数据,自然也就包含了大量的图像,基于内容的图像检索的广泛应用就是一个例子,这些常常都是以图像分割作为基础的。由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域。边缘提取是图
19、像边缘检测和计算机视觉等领域最基本的技术,如何准确、快速的提取图像中的边缘信息一直是这些领域的研究热点,随着此项技术研究的深入和整个领域的不断发展,边缘提取技术已经成为图像分割、目标识别、图像压缩等技术的基础。其理论意义深远,应用背景广泛,有相当的使用价值和理论难度。边缘提取算法的提出通常是面向具体问题的,普遍实用性较差。物体的边缘是由灰度不连续性所反映的。经典的边缘提取方法是考察图像的每个像素在某个邻域内灰度的变化,利用边缘邻近一阶或二阶方向导数变化规律,用简单的方法检测边缘,即边缘检测局部算子法。众所周知,边缘是图像的基本特征,所谓边缘就是指周围灰度强度有变化的那些像素的集合,是图像分割、
20、纹理分析和图像识别的重要基础。区域提取法有两种基本形式:一种是从单个像素出发,逐渐合并以形成所需的分割区域;另一种是从全图出发,逐渐分裂切割至所需的分割区域。在实际中使用的通常是这两种基本形式的结合。根据以上两种基本形式,区域提取法可以分为区域生长法和分裂合并法。区域生长法的基本思想是将具有相似性质的像素合起来构成区域,具体做法是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域的基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的。该方法的关键是要选择合适的生长或相似准则。生长准则一般可分为三种:基于区域灰度差准则、基于区域内
21、灰度分布统计性质准则和基于区域形状准则。分裂合并法是先将图像分割成很多的一致性较强的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的。区域提取法的缺点是往往会造成过度分割,即将图像分割成过多的区域,因此近年来针对这种方法的研究较少。阈值分割法是一种简单高效的图像分割技术。它通过设定不同的特征阈值,把图像像素点分为若干类。在一幅图像中用灰度等级表示各像素点的特征,许多阈值分割方法根据一维灰度直方图或者二维灰度直方图从背景中提取感兴趣的目标。阈值的选取是阈值分割技术的关键,如果阈值选取过高,过多的目标点被误归为背景;阈值选取过低,则会出现相反的情况。现有的大部分算法都是集中在阈值确定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学毕业 论文 图像 分割 算法 研究 实现
限制150内