基于排队论的正规化日常秩序开饭管理--毕业论文.doc
《基于排队论的正规化日常秩序开饭管理--毕业论文.doc》由会员分享,可在线阅读,更多相关《基于排队论的正规化日常秩序开饭管理--毕业论文.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目 录目录摘要一、引言1二、本文研究背景与应用现状2三、排队论数学模型建立3四、排队论模型准备6五、基于排队论模型的餐厅运行指标计算7六、基于排队论模型的数据分析与开饭管理建议8七、本文结论9参考文献10基于排队论的正规化日常秩序开饭管理摘要:排队论,在数学建模中也被叫做随机服务系统理论,目前在各行各业服务系统中应用广泛,例如电信系统、计算机系统、城市交通系统等都是排队论应用场合。高校饭堂开饭日常秩序管理系统作为院校正常运行的一个重要环节,直接关系到全校师生正常的生活秩序。在饭堂管理中,就餐排队问题作为全校师生接受食堂就餐服务的首个环节,被认为是评价高校饭堂服务满意度的一个指标,所以其在食堂管
2、理中发挥十分重要的作用。本文运用排队论相关知识,通过对饭堂排队方式建立数学模型,进行饭堂管理优化,改进食堂排队管理状态,对于高校食堂改善管理模式具有重要的实际意义。随着高校师生规模和数量不断增加,高校食堂管理越来越认识到运用科学排队模式系统的重要性,把排队理论引入到高校饭堂科学管理体系之中显得十分迫切。本文首先分析阐述与排队论之间相关的数学基础知识,给出了排队论的基础理论,特别是重点阐述了排队系统中应用广泛的M/M/S排队模型;然后将排队论基本思路和模型与高校食堂排队管理相结合,构建了合适的饭堂排队系统,并采用多服务窗口等待机制M/M/S排队模型进行数学分析。本文结合我校食堂采集实际数据系统整
3、理,通过排队论模型进行数学分析,得出了该模型系统参数,确定了最优饭堂服务窗口规模。通过本文建立的排队论数学模型相关分析,为我校食堂改善师生就餐问题给出合理化建议。关键词:排队论;体检排队系统;M/M/S模型;最优服务台数II一、引言排队论理论方法是研究关于排队系统的排队效率、平均服务效果、优化系统参数的实用化数学方法,该方法对衡量排队系统结构合理性,进行科学化、合理化设计和制定针对性优化措施,都具有重要的理论和实际意义。排队现象是在高校师生餐厅就餐过程中的普遍现象,特别是在早晨、中午、完善就餐高峰期,大量师生集中涌向学习餐厅就餐,在空间有限、服务窗口有限、就餐位置有限的餐厅环境往往出现拥挤不堪
4、的状况,特别是打饭窗口一般排出了长短不一人员打饭队列,由于长时间等待或者买不到合适自己的饭菜,往往会引起教师、学生对于饭堂秩序管理的不满,这直接关系到全校师生对于高校的正规化日常秩序食堂管理服务的满意度。据有学术反应,为了避开饭堂打饭长时间的排队和拥挤的人群,有些师生甚至采用购买方便面、小面包、小点心等零食作为正餐,长此以往对于这些师生的身体健康必将带来严重影响,进而还会影响师生缺乏旺盛的精力投入到教学、学习之中,因此教师的教学工作和学生的学习生活都会遭受不同程度的干扰。还有些师生选择到校园外面社会餐馆就餐,由于此类餐馆规模小、管理不正规,很难保证提供饭菜的卫生,对于在外就餐的学生的身体健康带
5、来严重的安全隐患1。由此可见,据调查分析结果来看,高校绝大多数师生更倾向于在本校餐厅就餐,只要学校饭堂能够加强正规化日常管理秩序,特别是提高学校饭堂开饭管理水平,在餐厅科学化配置打饭窗口种类和数量,就可以有效解决学校师生在就餐高峰期等待时间过长、选不到合适打饭窗口、买不到适合自身饭菜等问题,实现在学校餐厅短时间完成满意就餐的目的。但是,从学校餐厅角度来看,如果单纯增加过多打饭窗口,虽然能够实现学校师生排队打饭时间的有效缩短,提高学校师生对餐厅的服务的满意度,但同时必须考虑过多打饭窗口的设置所引入的餐厅的运营成本增加,更何况学校餐厅打饭窗口的数量设置本身就收到学校餐厅数量和餐厅空间大小的限制。所
6、以本文研究工作必须有效运用排队论相关理论知识,在学校师生餐厅打饭总体需求和学校食堂管理成本、学校餐厅数量和空间之间进行科学衡量,同时满足学校师生就餐和学校餐厅成本和资源多方面需求2。本文综合运用排队论数学模型,学校1号食堂和2号食堂两个餐厅的运行情况状况进行科学分析,定量评价,从而为我校加强正规化日常管理秩序,特别是提高学校饭堂开饭管理水平提高参考,并给出合理化改进建议。二、本文研究背景与应用现状排队论作为服务系统排队问题和排队规律的数学基础学科,也属于运筹学方向的一个主要研究分支。早在20世纪初,丹麦科学家爱尔朗在电话服务问题相关研究过程中,为了找到提高通信效率有效方式,首先研究了电话系统中
7、呼叫服务的排队现象,在其发表的学术论文中系统阐述了上述科学问题,成为“排队论”应用数学科学的创始人,建立了排队论科学的基本原则。他首次提出了电话服务系统“平衡模型”,给出了该“平衡模型”的递推状态公式,建立了影响深远的“爱尔朗电话损失率公式”3。1935年,美国数学家费勒通过采用“生灭过程”,系统探讨了排队论系统数学方法,并在此后,排队论逐渐发展成为一门重要的数学应用学科。1956年,英国数学家肯德尔研究了排队论中的“嵌入马氏链”理论,成为排队系统的分类模型,成为排队论一个基本理论。1960年以来,随着计算机技术、工业制造技术、系统异步技术等新方向、新领域和新技术不断进步,探讨了很多的复杂系统
8、研究和实现方法,并展开“瞬时态”相关的技术研究,建立了“逼近优化”基础理论2。1972年,随着研究和应用的不断扩展和深入,经典排队数学模型在应用中出现了很多局限性,相关学术研究又开始向“休假排队理论”方向发展,科学家Levy与Yechiali就是这一排队论新研究方向的典型代表,他们最早提出了采用“系统空闲期”的学术视角,并在同一时期提出了M/G/1型、M/M/n型休假排队理论,并在他们所给出的基础理论中系统阐述了“休假”、“休假策略”等新概念3。Levy与Yechiali所建立的排队论新方法和新模型主要思想是采用闲期对排队系统进行时间分配调整,也就是通过服务人员寻找空闲时间休息,他们所给出的这
9、种排队系统也被称作“休假服务系统”。由此可见,排队论相关基础理论的出现、发展都与实际工作和生活应用系统密切相关,主要是面向解决实际排队系统问题而不断进步的。比如,关于排队论最早出现和引起重视是面向电话交换机中实际应用需求,解决电话话路呼入排队的技术难题。经过50多年的发展,排队论相关理论已经发展成为独立的应用数学学科,对于我国国民经济的发展进步发挥了越来越大的作用。特别是1972年诞生的休假排队理论,已经成为经典排队论重要组成部分在服务系统中不断推广应用。排队论相关理论重要目标就是改进应用系统性能,提高系统服务质量,特别是通过实现系统相关服务的最佳平衡的技术方式,达到最终服务系统最优运营或者最
10、优设计目的2。当前,排队论相关理论随着理论的不断发展和进步,其应用范围几乎涵盖了所有服务相关系统,这些应用在通信服务系统、交通服务系统、存储服务系统和管理服务系统等都能发挥其作用。例如,西方发达国家人们去超市、银行、电信等部门办理服务业务时,主动取号排队等候呼叫已成为人们基本行为准则;同时,以排队管理系统为主要产品的高科技企业已经遍布经济市场各个角落,并逐步发展成为一个特殊高科技行业。目前,排队系统应用范围已经在电信、饭店、办事部门、医院等服务企业或部门,并且这种基于“排队系统”行业服务理念已经深入到行业服务当中,并变为相关应用企业、单位、部门必不可少的服务方法3。对于我国而言,直到1998年
11、才诞生相关企业开始排队服务系统相关技术产品市场运营,并出现了第一批排队相关产品。但当时这些排队技术、产品的应用范围十分受限,服务行业对于此类技术产品的接纳度不高,初期发展应用十分缓慢。2001年,我国排队产品进入快速发展时期,特别是对于排队服务系统相关公司而言,在2003年出现发展高峰期。当时我国很多大型城市和经济发达地区的服务行业和部门对排排队服务系统需求呈现爆发式增长。目前,随着排队服务系统在电信、银行、医院的广泛应用,不仅大幅度提高了人们的公共文明程度,并彻底把营业厅、诊室的无序模式转变为有序方式2。本文研究工作必须有效运用排队论相关理论知识,在学校师生餐厅打饭总体需求和学校食堂管理成本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 排队 正规化 日常 秩序 开饭 管理 毕业论文
限制150内