热压成形技术对汽车高强度钢性能影响--毕业论文外文翻译.doc
《热压成形技术对汽车高强度钢性能影响--毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《热压成形技术对汽车高强度钢性能影响--毕业论文外文翻译.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Influence of Hot Press Forming Techniques on Properties of Vehicle High Strength Steels Abstract: Based on the combination of materials science and mechanicalengineering ,hotpress forming process of the vehicle high strength steels was analyzed. The hot forming processinclud -ed: heating alloy srapi
2、dly to austenite micr ostructures, stamping and cooling timely,maintaining pressur eand quenching . The results showed that most of austenite micr ostructure w as changed into uniform mar tensite by the hot press form ing while the samples were heatedat 900 。C and quenched. The optimal tensile stren
3、gth and yield streng th were up to 1530 MPa and 1000 MPa, respectively, and the shape deformation reached about 23% . And springback defect did not happ -en in the samples.Key words: high streng th steel; lightw eight ; hot forming ; martensiteAs an effective economical energy measure, the lightw ei
4、ght dev elo pment dir ection of automo -bile has become one of the most important research subjects in the automotive industry. There are three major ways to achieve automobile light weight : optimizing vehicle frames and struc- tures; making vehicle bodyor f rame of new and alternativ ematerials to
5、 reduce the vehicle mass ( The high and ultra high strength steel can be used as alternative materials because of its thinner thickness) ; adopting advanced manufacturing techniques for the sake of automobile light wei- ght , such as thickness-gradient high strength steel (HSS) or metal based compou
6、nd plates by con -tinuous pressing or hot press forming 1 . Although HSS has been applied in some domestic top grade vehicles, the key producing technologies have always been dominated by foreign compan- ies, such as Acelor Company, so as to raise the product cost obviously. By domestic self-designe
7、d hot press forming techniques and water-cooling mould, the automo bile HSS can be produced to subst itute foreign vehicle parts.In general, with the enhancement of steel blank,s mechanical strength, its formability is worsened dramatically. It is difficult to apply the traditional cold stamping tec
8、hnolog y into the f ield of pressing HSS. Thus, the hot stamping technology of martensit icsteel blank is applied as a new technology , which combines metal thermoplast ic forming metho d and water-cooling mould quenching principle. In this paper, boro n steel blank was formed and water-cooling moul
9、d was quenched simultane ously during the process of hot stamping . Comparedwith original automobile pearlite steel 2 , the automobile HSS obtained by advanced hot press forming technique can reduce about 30% of the total vehicle mass and achieve complex g eomet ries, high security and mechanical st
10、 reng th. The r easo n is that austenite microst ructure with optimal plast icity and ductility can be obtained by hot press forming at high temperature 3- 5 , and the HSS with both excellent mechanical properties and light weight will be obtainedafter being formed and quenched 6- 8 . The applicatio
11、n of hot-formed thinner HSS plates will becoman important measure to realize vehicle light weight.1 Experimental SetupIn order to form HSS at high temperature, and to avoid cracks and springback, the sam -ples need rapid heating and transform completely into stabl eaustenite microst ructure. And the
12、n, samples are pressed and cooled in self-made water-cooling mould.For the obtained HS -S sample, its shape-freezing character or no spring back defect is an obvious advantage, and most of microst ructure in the sample is martensite. The thickness of sample is 1.6 mm, and the main elements of HSS in
13、 this experiment are show n in Table 1.Table 1 Main elements of material in the experimen22MnB5CMnCrSiBPSAlMinimum0.2201.2000.1100.0020.002-0.020Maximum0.2501.4000.2000.0050.0050.0200.0050.050Actual ex perimental procedure included: 1) set different heat t reatment temper atures in ther ange of750 t
14、o 1 000; 2) put the sample into the heat treated furnace to be heated for 4 min at a certain temperature; 3) remove it by mechanical hand and put it into the hot forming moulds to be pressed quickly ;4) simultaneously, it was water-cooled at about 30/s in the mound. The mechanical properties of samp
15、le were analyzed by tensile test system and the microstructure appear ance was analyzed by metal lographic analysis device.The shape and size of test sample are show n in Fig. 1.Fig 1 The shape and size of specimen2 Results and DiscussionMechanical propert ies of HSS ( boron steels)with different th
16、icknesses ( 1.0mm, 1.6mm, 2.0mm,2.5 mm, 3.0 mm and 4.0 mm, respectively) were checked (GBT 16865-1997 was consulted, and samples were selected along 0, 45 and 90 rolling direction respec -tively ) . The unidirectional tensile tests (based on the metal tensile test ing standard of GBT228-2002 ) were
17、finished. Compared with USIBOR1500, the values of basic mechanical properties for HSS w ith dif ferent thicknesses in the experiment are shown in Fig 2. Fig 2 shows that after water-cooling quenching , the tensile strength and yield strength of samples ( except the one w ith thickness of 4.0 mm )rea
18、ched 1 500 MPa and 1 000 MPa, respect ively. The values of the strength were twice bet ter than those of samples before quenching , and nearly the same to those of the plates of thickness 1.75 mm from Acelor Company ( USIBOR1500 shown in Fig 1) .Fig2 Tensile and yield strength of high strength steel
19、s with different thicknesses before and after quench ingGenerally , hot press forming of samples is operated above transition temperature of martensite micro structure. The heating temperature in this experiment was in the range of 750 to 1000 because it took 3 s or so for the samples to be delivere
20、d in the air. And then, based on analyzing tensile strengths Rm of samples after hot-forming at different temperatur -es and quenching , the optimal temperature can be found. It is shown in Fig3. Fig3 Curve of tensile strength vs preheating temperatureFrom Fig 3, it is obvious that the value of tens
21、ile strength Rm only reaches 900 MPa at 750 ; the optimal value is 1530 MPa at 900 , and the value will fall as temperature is set above 900 . Based on analy zing microstructure and Fe-Fe3 C phase diagram, samples lay in the transition region of ferrite austenite microstr ucture coexistence at 750 .
22、 At this moment , austenite has appeared in microstructure of samples, and it can be transformed into martensite microstructure through water-cooling. So the mechanical properties, such as tensile strength and yield strength, will be improved. That is to say ,tensile strength of samples is a little
23、hig her than that of original ones ( Rm is 600 MPa or so) . The content of austenite becomes larger as temperature is raised,and the tensile str ength will be improved gradually .As far as 22MnB5 steel is concerned, the austenitizing temperature is about 880 . As Fig3 shows, if samples are heated ra
24、pidly to 900 and air cooled for 3, austenite microstr uctures are obtained completely . Then samples are hot formed and water-cooling quenched, the fraction of martensite microstructure in samples is more than 95% , so the curve shows a peak. How ever, as temperature exceeds 900 , because superheat
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 热压 成形 技术 汽车 强度 性能 影响 毕业论文 外文 翻译
限制150内