建立模型计算太阳影子长度和梯度下降法拟合太阳影子数据定位-全国大学生数学建模竞赛A题论文.doc
《建立模型计算太阳影子长度和梯度下降法拟合太阳影子数据定位-全国大学生数学建模竞赛A题论文.doc》由会员分享,可在线阅读,更多相关《建立模型计算太阳影子长度和梯度下降法拟合太阳影子数据定位-全国大学生数学建模竞赛A题论文.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、建立模型计算太阳影子长度和梯度下降法拟合太阳影子数据定位一 摘要本文建立了一个较为理想的几何立体模型来计算某个日期,某个时间,某个纬度的太阳高度角,从而计算太阳照射直杆的影长。并且通过对一系列按时间变化记录的数据以及部分已知参数,利用梯度下降法进行曲线拟合样本数据点,以此求出相应的未知的参数,算出数据记录时所在的可能的地点经纬度和日期。关键词:几何立体模型 拟合曲线 梯度下降法 二 正文1. 建立太阳光照射地球,地球上垂直地面杆的影长模型 假设太阳光线完全平行,地球是完全标准的球体,地球公转轨道是标准圆形,且随日期变化匀速运转。1.1 建立太阳光线和地球上某一纬度的上某点X切面所形成的太阳高度
2、角模型O为地球球心。设太阳光线和地球的赤道面形成的角度为EOC = ,纬度即BOA=,根据纬度的定义显然OB是纬度上X点的切面(即X点地面)的法向量方向。X点的经度和太阳垂直照射点所在的经度的夹角即AOC为(可以由该点的真实时间计算得到,地球每小时自转15,=(该点真实时间-12) * 15 )。欲求太阳在X点的高度角,相当于求X点地面法向量方向OB和太阳光线的夹角BOE的余角。假设太阳高度角为,则sin = cos BOE。如图作ACOC,作EC和BA垂直于赤道面,BDCE于D。设OA长为z,则OB = z / cos,OE=z cos / cos,BD=AC=z sin,CD=AB=z t
3、an,CE=z cos tan。DE = CE - CD =z cos tan - z tan。BE = BD + DE=(z sin)+(z cos tan - z tan)。根据余弦定理可得,经化简可得:cosBOE = sinsin + coscoscos。即sin = sinsin + coscoscos用反三角函数即可知太阳高度角。1.2 建立太阳光线和地球赤道面所成角度随日期变化的模型如图,如果不考虑地球自转,则随着公转,太阳直射点将在地球上画出一个圆,这个圆所在的平面即为回归面。设A点为夏至日(6月22日)的直射点,此时AOB=N=2326,随着日期推移,直射点移到点C,则此时C
4、OD=正是我们所要求的太阳光线和地球赤道面所成的角,而AOC则是日期相对6月22日(公转导致)移动所形成的夹角,所以AOC=相对6月22日天数差距/365 * (闰年为366),其中比6月22日小则天数差距为负值。易证,赤道面和回归面的二面角大小为N=2326,平面AOB赤道面,平面COD赤道面。所以该问题可以转化为如下图所示的情形。即一个二面角AOB大小为N,垂直于二面角AOB其中一个面BOD的面COD,求COD被这个二面角所夹出来的COD(即)大小。图中AOB,AOC,COD为直角三角形。CD = AB = OA sinN,OC=OA / cosAOC,sin=CD / OC = sinN
5、 * cosAOC用反三角函数即可求得。1.3 建立某太阳高度角下,杆影长的模型由于杆影长大部分时候远小于地球的半径,所以不考虑地球地面的弯曲,当做地面为平面。则影长shadowlength = L * cot 。其中L为杆长。1.4 北京时间和某一经度longitude真实时间的关系。由于北京时间是以东经120为基准计算的,所以该经度longitude上的真实时间应该为realtime =(longitude - 120)/ 15 + beijingtime (小时),其中单位为小时和度,除以15因为地球每小时自转15。2. 画出2015年10月22日北京时间9:00-15:00之间天安门广
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建立 模型 计算 太阳 影子 长度 梯度 下降 拟合 数据 定位 全国大学生 数学 建模 竞赛 论文
限制150内