基于matlab的图像边缘检测算法研究大学本科毕业论文.doc
《基于matlab的图像边缘检测算法研究大学本科毕业论文.doc》由会员分享,可在线阅读,更多相关《基于matlab的图像边缘检测算法研究大学本科毕业论文.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本科毕业设计(论文)题目:基于matlab的图像边缘检测算法研究2013届毕业设计(论文)毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期: 毕业论文(设计)授权使用说明本论文(设计)作者完全了解*学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复
2、制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名: 指导教师签名: 日期: 日期: 注 意 事 项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文
3、译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它基于matlab的图像边缘检测算法研究摘要图像的边缘检测技术是数字图像处理技术
4、的基础研究内容,是物体识别的重要基础。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适应能力很差,有待进一步改进和提高。本论文首先介绍了图像边缘检测这个课题的意义和背景;作为理论基础,在第二章简单的介绍了传统的图像边缘检测算法,如Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子,回顾了经典的边缘检测算法,为后面介绍Canny算法作为铺垫。在第三章,结合Canny算法的基本原理、算法的三个标准、算法的思路及检测步骤提出了对Canny算子中的图像滤波平滑处理及取阈值的算法进行改进的方法,并进行了实验检验。基于传统Canny算法中采用高斯
5、滤波器对图像滤波平滑处理的效果有待改进,本论文引用了自适应中值滤波器,在使用Canny算法之前,对图像进行滤波,通过图3.4的结果显示,检测效果明显改善;而在取阈值时,在使用Otsu算法的基础上,采用顶帽算子对图像进行预处理以补偿图像,这样能取得更合适的阈值;图3.5和图3.6检测结果分别在滤波器、阈值两个方面进行了实验的比较,并与传统的Canny算法的检测结果进行了对比,显示出了本文所采用的改进算法的优越性。关键词:边缘检测;Canny算子;自适应中值滤波器;Otsu算法;顶帽算子Research on image edge detection algorithms based on MAT
6、LAB ABSTRACTImage edge detection technology is the basis of digital image processing technology research, an important foundation for object recognition. Existing edge detection technique has some limitations in noise suppression threshold parameter selection, poor adaptive capacity needs to be furt
7、her improved and enhanced.This paper introduces the image edge detection significance and background of the subject; theoretical basis, in the second chapter a brief introduction of the traditional image edge detection algorithm, such as Roberts operator, Sobel operator, Prewitt operator, Laplacian
8、operator LOG operator, recalling the classic edge detection algorithm, Canny algorithm described later as bedding. In Chapter 3, the basic principle of combining the Canny algorithm, the algorithm of the three criteria, the idea of the algorithm and the detecting step, the improved method of on Cann
9、y operator image smoothing filtering and thresholding algorithms, and experiments were carried out test.Based on the traditional Canny algorithm using Gaussian filter smoothing effect for image filtering needs to be improved, the paper quoted the adaptive median filter, Canny algorithm, the image is
10、 filtered by the results of Figure 3.4 shows the detection results significantly improved; when the threshold value is taken using the Otsu algorithm based on the top-hat operator preprocessing on the image to compensate for the image, this can obtain a more appropriate threshold; Figure 3.5 and Fig
11、ure 3.6 the detection result, respectively, in the filter threshold two aspects of the comparison of the experiment, and compared with the traditional the Canny algorithm of detection results show the superiority of the improved algorithm used in this paper.Keywords: edge detection; Canny operator;
12、adaptive median filter; Otsu algorithm; Top-Hat operator目 录第1章 绪论11.1 序言11.2 数字图像边缘检测算法的意义11.3 本文的主要章节安排2第2章 传统边缘检测方法及理论基础32.1 数字图像边缘检测的现状与发展32.2 MATLAB和图像处理工具箱的背景知识42.3 数字图像边缘检测关于边缘的定义42.4 基于一阶微分的边缘检测算子52.4.1 Roberts算子(梯度交叉算子)62.4.2 Sobel算子62.5 基于二阶微分的边缘检测算子72.5.1 Laplacian算子82.5.2 LOG算子9第3章 Canny边
13、缘检测算法的改进与研究113.1 Canny边缘检测算法113.1.1 Canny边缘检测基本原理113.1.2 Canny算法边缘检测步骤123.1.3 Canny算法的流程图123.1.3 传统Canny算法的实验与分析143.2 基于Canny算法的改进与研究143.2.1 自适应中值滤波器143.2.2 最大类间方差法153.2.3 顶帽变换163.2.4 传统Canny算法与本文算法的实验结果与分析18第4章 总 结20致 谢21参考文献22V第1章 绪论1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在
14、图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和
15、分形理论等。Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间内实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果1。1.2 数字图像边缘检测算法的意义数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以
16、用于图像理解和分析,并且通过边缘检测可以极大地降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。图像的边缘检测技术是数字图像处理技术的基础研究内容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适应能力很差,有待进一步改进和提高。(1)多谱图像是图像配准技术中的一个难点,传统的图像配准技术只适用于同源图像,由于红外图像和可见光遥感图像的成像波段不同,对于同一场景,所采集到
17、的图像的差异很大。在此课题中,作者首先通过边缘检测,得到红外图像与遥感可见光图像的边缘图像,再通过尺度不变特征匹配,就能得到红外图像与可见光遥感图像之间的透视变换关系,从而成功完成了多谱图像配准2。(2)在“货运列车动态图像故障检测系统(TFDS,Trouble Of Moving Freight Car Detection system)中的故障识别”的课题中,作者采用水平Sobel算子检测边缘,对边缘图像进行水平方向投影,计算得到货运列车底部心盘螺栓大致区域的图像,然后用Harris算子得到一些候选故障区域,最后通过相关匹配来识别故障。(3)在“基于双目立体视觉的人体动作捕捉系统”的课题中
18、,利用图像的边缘和深度信息从视频中分割出人体前景图像。因此对图像边缘检测技术理论及其应用进行研究都有很重要的意义。1.3 本文的主要章节安排本论文首先在第一章介绍了这个课题的意义和背景;在第二章简单的介绍了传统的图像边缘检测算法,如Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子作为理论基础,回顾经典的边缘检测算法,也反映了研究本课题的重要性和深度;在第三章着重介绍Canny算法的基本原理、算法的三个标准、算法的思路及检测步骤,也就是本论文的基本思想,在此基础上分别对Canny算子的图像滤波及取阈值的算法进行改进,并与传统的Canny算法的检测结果进行
19、了对比,显示出了本文所采用的改进算法的优越性,同时基于实验结果给出了分析和结论以及不足之处;在第四章,对整个论文的设计进行了总结。第2章 传统边缘检测方法及理论基础2.1 数字图像边缘检测的现状与发展在数字图像处理中,边缘特征是图像的重要特征之一,是图像处理、模式识别和计算机视觉的重要组成部分之一,图像边缘检测的结果直接影响进一步图像处理、模式识别的效果。近几十年来,图像边缘检测技术成为数字图像处理技术重要研究课题之一,随着科学技术的发展,研究人员提出了很多图像边缘检测方法及边缘检测效果的评价方法,并且将这些边缘检测技术应用于计算机视觉和模式识别工程领域,使得边缘检测技术的应用范围越来越广,图
20、像的边缘一般是图像的灰度或者颜色发生剧烈变化的地方,而这些变化往往是由物体的结构和纹理,外界的光照和物体的表面对光的反射造成的。图像的边缘反映了物体的外观轮廓特征,是图像分析和模式识别的重要特征,数字图像处理技术是一门交叉学科,数学理论、人工智能、视觉生理学和心理学等各种理论为边缘检测技术研究注入新的活力,涌现出很多边缘检测理论和方法。根据边缘检测所处理的图像类型,可分为两大类:灰度图像边缘检测方法和彩色图像边缘检测方法。基于本论文仅研究讨论灰度图像边缘检测,这里介绍经典的灰度图像边缘检测方法。灰度图像的边缘是像素的灰度值发生变化的地方,这些变化通常是屋顶变化或者阶跃变化,图像屋顶变化或者阶跃
21、变化的大小一般用灰度图像一阶导数或二阶导数的大小来描述,所以灰度图像的边缘检测方法主要分为两大类:一阶微分图像边缘检测算子(如Roberts算子、Sobel算子、Prewitt算子)和二阶微分图像边缘检测算子(如Laplacian算子、LOG算子、Canny算子)。一般来讲,一个好的边缘检测算法应满足如下要求:(1)检测精度高;(2)抗噪能力强;(3)计算简单;(4)易于并行实现。其中最根本的问题是解决检测精度与抗噪声能力间的矛盾。从理论上讲,这两者之间存在着相互制约的互变关系,即不确定性原则。这一原则可表述为,一个信号不可能在时域和频域中任意高度集中。因而边缘的定位精度和抗噪声能力不可能同时
22、无限地提高,这两项指标的乘积为一常数,理论上可以通过改变空域形式来获得任意好的定位精度或信噪比,但不能两者都得到改善。因此,衡量一个检测方法的标准也不能只看某一指标的高低,而应考察其综合指标是否达到理论上的极限。虽然迄今已出现了众多的理论和方法,而且有些方法发展得相当成熟,但从这个意义上讲还没有一种普遍适于任何条件的最优算法。为此人们已将注意力放在研究更直接的、专用的和面向对象的视觉信息系统,如“主动视觉”,“定性视觉” 、“面向任务的视觉”等,通过强调场景和任务的约束、增加信息输入和降低对输出的要求等手段来降低视觉处理问题的难度。这些思想大大丰富和补充了原来的理论,使算法向具体化、实用化方向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 matlab 图像 边缘 检测 算法 研究 大学本科 毕业论文
限制150内