路多智能温度测控系统设计课程设计--毕业设计.doc
《路多智能温度测控系统设计课程设计--毕业设计.doc》由会员分享,可在线阅读,更多相关《路多智能温度测控系统设计课程设计--毕业设计.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、天津理工大学 通信工程 课程设计电子技术课程设计题目:多路智能温度测控系统设计 学 院 计算机与通信工程学院 专 业 通信工程 学 号 20081672 姓 名 * 指导老师 * 2011年5月目 录摘要 3关键字 3前言 3一Proteus内容简介4二、设计目的4三、设计内容4四、DS18B20简介5五、单片机简介9六、基本设计原理9七、设计步骤10八、Proteus设计图11九、Proteus仿真调试11十、软件设计13结语总结 14参考文献 14附录115附录217摘 要:本文介绍了数字温度传感器DS18B20测温的基本原理以及基于DS18B20的多点温度测量系统的设计过程,包括软件设计
2、和硬件设计两大部分。软件部分给出了软件设计思想及软件流程图,硬件部分给出了单片机、测温电路、显示电路设计。单片机使用AT89C52单片机,温度传感器使用美国DALLAS公司最新推出的DS18B20数字式温度传感器,显示模块采用LCD显示。基于DS18B2O的多点测温系统在实际中应用广泛,测温系统简单、测温精度高、连接方便、占用口线少、转换速度快、给硬件电路设计工作带来极大的方便并且缩短了开发周期。关键词:DS18B20 多点温度测量 单片机 Proteus仿真前 言随着电子技术的快速发展,我们生活中的方方面面几乎都充斥着电子产品,我们也无时无刻不享受着电子技术带给我们的便利。作为电子专业的大学
3、生,我们应当在享受电子生活带给我们的便捷的同时,应该更多的理解与思考电子产品的设计过程,并能在已有的集成芯片和单片机等微控制器的基础上,自己动手亲身体验电子设计的过程,以便于将课本上的理论实践化,做到学以致用,更好的掌握单片机等元器件的应用,锻炼独立解决问题的能力。本课程设计题目是基于DS18B20的多路智能温度测控系统设计,主要介绍了DS18B20的工作过程和原理,以及基于它的系统设计。在这个设计里,根据要求设计了两个DS18B20与单片机之间的单端口通信,可以推广到多个DS18B20。通过学习了解掌握了Proteus 原理图设计及仿真方法,熟悉Keil开发环境。在设计过程中参考或引用了基于
4、PROTEUS的电路及单片机系统设计与仿真,DS18B20数据手册等参考资料以及网络上的相关资料。在此,向这些技术资料的作者表示感谢。由于设计者的学识水平有限,加之时间仓促,作品不够完善,不足之处在所难免,敬请老师指导和改正。一Proteus内容简介Proteus软件是英国Labcenter electronics公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件
5、、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086、MSP430、Cortex和DSP系列处理器。它是能进行模拟电路、数字电路、模数混合电路、RS232动态仿真、I2C调试器、SPI 调试器、键盘和LCD、LED 系统的设计与仿真的平台。Proteus 具备原理图设计、电路分析与仿真、PCB 设计功能,可以通过调入程序的编译结果. hex 或. cof 文件来调试单片机程序,还可直接嵌入到 Microchip 公司的单片机调试软件 MPLAB IDE中,进行程序的调试和仿真。
6、二、设计目的1、掌握单片机基本编程技术及外围电路的搭建2、熟练掌握DS18B20的基本操作并了解其工作原理3、熟练掌握Proteus原理图设计及仿真三、设计内容1、单片机最小系统设计2、DS18B20与单片机的单口通信设计3、Proteus原理图的绘制与仿真4、单片机程序编写四、DS18B20简介DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,可以节约硬件资源,而且使用较为方便。DS18B20产品的特点 (1)只要求一个端口即可实现通信。 (2)在 DS18B20中的每个器件上都有独一无二的序列号。 (3)实际
7、应用中不需要外部任何元器件即可实现测温。 (4)测量温度范围在55C到125C之间。 (5)数字温度计的分辨率用户可以从 9位到 12 位选择。 (6)内部有温度上、下限告警设置。DS18B20的引脚介绍 TO-92封装的DS18B20的引脚排列见下图 DS18B20的使用方法由于 DS18B20 采用的是 1Wire 总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51 单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对 DS18B20 芯片的访问。 由于 DS18B20是在一根 I/O线上读写数据,因此,对读写的数据位有着严格的时
8、序要求。DS18B20 有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。(此图为以下时序图的图例)DS18B20的复位时序DS18B20的读时序 对于DS18B20的读时序分为读0时序和读1时序两个过程。对于DS18B20的读时隙是从主机把单总线拉低之后,在 15us之内释放单总线,以让DS18B20把数据传输到单总线上。DS1
9、8B20进行一个读时序过程,至少需要60us才能完成。(下图左边为读“0”时序,右边为读“1”时序)DS18B20的写时序 对于 DS18B20 的写时序仍然分为写0时序和写1时序两个过程。对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在 15us 到 45us 之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。(下图左边为读“0”时序,右边为读“1”时序)单片机检测到DS18B20的存在,即可向其发送ROM操作命令 每一片DS18B20在其ROM中都存有其唯一的64位序
10、列号,在出厂前已写入片内ROM中,主机在进入操作程序前必须逐一接入18B20用读ROM(33H)命令将该18B20的序列号读出并登陆。当主机需要对众多在线18B20进行操作是,首先要发出匹配ROM命令(55H)之后的操作就是针对该18B20的。而所谓跳过ROM命令即为:之后的操作是对所有18B20的框图中先有跳过ROM,即是启动所有18B20进行温度变换之后,通过匹配ROM再逐一地读回每个18B20的温度数据。在18B20组成的测温系统中,主机在发出跳过ROM命令之后,再发出统一的温度转换启动码44H就可以实现所有18B20的统一转换,再经过1s后,就可以用很少的时间去逐一读取。64-bit
11、ROM数据结构图:低8位为产品类型编码(DS18B20均为10h),中间48位为每个器件唯一的序号,高8位为CRC(循环冗余校验)码。DS18B20中有用于存储测得的温度值的两个8位RAM存储器,编号为0号到1号。1号存储器存放温度值的符号,如果温度为负,则1号存储器8位全为1,否则全为0。0号存储器用于存放温度值的补码,LSB(最低位)的“1”表示0.5摄氏度。将存储器中的二进制数求补再转化成十进制数并处以2就得到被测温度值(-55摄氏度125摄氏度)。温度/数据转换关系转换示例五、单片机简介单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器
12、RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。六、基本设计原理单片机在本设计中充当了重要的角色,是整个温度测控系统的核心,作为控制中心而存在,与本设计中的另一个重要部分DS18B20进行数据通信并控制LCD液晶屏显示输出,完成了整个多点温度的测控任务,DS18B20、AT89C52单片机、LC
13、D液晶屏构成了整个多点温度测控系统。本设计共采用了2片DS18B20芯片并接于P1.1口采用AT89C52作为控制中心与DS18B20完成单口通信,读取DS18B20采集的温度信息,并经过处理交由1602LCD显示。本设计出于只阐述说明原理考虑只使用了2片DS18B20芯片,并外接了一个开关用于这2片芯片温度数据之间的切换。系统框图如下所示。 系统框图AT89C52DS18B20DS18B20LCD1602七、设计步骤1、查阅 DS18B20芯片datasheet,熟悉其工作原理2、在Proteus环境下绘制系统原理图3、在Keil开发环境下编写程序4、将程序导入Proteus下仿真5、根据仿
14、真结果改写程序6、撰写设计报告八、Proteus设计图说明:左下角为两个DS18B20芯片,DQ端同接于AT89C52的P1.1口,右上角为1602LCD,P3.3口接开关,通过它的开关切换两片DS18B20之间的温度显示。九、Proteus仿真调试在Proteus中使用多个DS18B20 时,必须改变器件的属性,使仿真中的每个器件序列号各不相同。具体做法:右击DS18B20,选中Edit Properties选项,在其中改变ROM Serial Number的值(在该对话框下还可以改变Granularity的数值,即改变每次调整温度的额度)。在Proteus中,可以人为改变3个字节的器件序列
15、号。要想得到全部8个字节,一个简单的方法就是每一次总线上只连接一个器件,利用0x33读器件序列号的命令在程序中得到完整的器件序列号。将测试序列号的程序烧入Proteus下AT89C51中,程序中定义通信端口为P1.1只需将DS18B20依次与单片机连接即可。并在运行中点击菜单项debug,选中watch window,按alt+A,即出现图1所示对话框,在Name项中输入a,在Address项中输入0x08,点击add,在Watch Window窗口中即可看到序列号低八位的值。然后依次输入0x090x0f,再点击done键,即可获得所有64位序列号。所得序列号如图2所示(本设计共用了两个DS1
16、8B20)。测试程序详见附录1 程序中包含向DS18B20发送一个字节,读取一个字节,以及DS18B20的初始化等子程序。 图 1图 2 十、软件设计1、软件流程图判断K=1?读取1ST DS18B20LCD显示读取2ND DS18B20LCD显示初始化DS18B20开始是否主程序流程图 DS18B20读取温度流程图开始初始化DS18B20跳过读序列号操作匹配ROM启动温度转换读序列号匹配ROM读取温度寄存器 2、关键模块说明本程序由主函数main.c 、 头文件ds18b20.h 、 lcd1602.h (为便于调用特将其编为.h文件)三部分组成。主函数main.c中处理了由DS18B20采
17、集的温度信息并交由1602LCD显示,并设置了一个开关,当打开开关显示1ST的温度,闭合开关显示2ND的温度。ds18b20.h 是DS18B20的驱动程序,包含了DS18B20的初始化函数、读写一个字节的函数、匹配ROM函数、温度读取函数。Lcd1602.h是1602LCD的驱动程序,包含了LCD初始化等程序,使用时只需在主程序中调用GotoXY()函数即可让LCD1602显示字母数字等信息。具体程序见附录2。结语总结 在本次课程设计中,我对于芯片的学习能力有了一定了提高,对于初次接触的DS18B20芯片能通过阅读它的数据手册了解其使用方法,并付诸于软件编程思想。在设计中碰到了一些困难,如在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 温度 测控 系统 设计 课程设计 毕业设计
限制150内