本科毕业设计论文--实训信号发生器的设计与制作实训报告.doc
《本科毕业设计论文--实训信号发生器的设计与制作实训报告.doc》由会员分享,可在线阅读,更多相关《本科毕业设计论文--实训信号发生器的设计与制作实训报告.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、信号发生器的设计与制作实训报告系 别:信息工程系专 业:电气工程及其自动化班 级:1303班姓 名:卢润智学 号:201325010334指导教师:陈海峰目录1.单片机模块的介绍- 1 -1.1AT89C51- 1 -1.1.1主要性能参数:- 1 -1.1.2功能特性概述:- 2 -1.1.3AT89C51方框图- 3 -1.1.4引脚功能说明- 3 -1.1.5时钟振荡器:- 5 -1.1.6AT89C51的极限工作参数- 6 -1.2DS1307- 6 -1.2.1特点- 7 -1.2.2和单片机连接- 7 -1.2.3 I2C时序:- 7 -1.3DS18B20- 7 -1.3.1工作
2、原理- 8 -1.3.2概述- 8 -1.3.3应用范围- 9 -1.3.4接线方法- 9 -1.3.5特点- 9 -1.4OLED显示屏- 10 -1.4.1技术功能- 10 -1.4.2发光原理- 11 -1.4.3特点- 12 -2.心得体会- 13 -3.实物功能图- 14 -4.附录- 15 -4.1零件清单- 15 -4.2主要程序代码- 15 -基于DS1307的多功能时钟系统摘要:以AT89C51/AT89C52单片机为控制核心,通过实时时钟芯片DS1307和数字温度传感器DS18B20构成了一个多功能的数字时钟系统。本报告详细介绍了整个系统的硬件组成结构、工作原理和系统的软件
3、程序设计。系统0.96寸OLED作为显示器,具有实时时间与日历显示、环境温度显示、按键调时、闹铃定时等功能。软件程序采用均采用C语言编写,便于移植与升级。关键词:实时时钟 单片机AT89C8X系列 DS1307 DS18B20 OLED引言:目前家用的数字电子钟,多数只能显示小时、分钟等信息,功能单一,而且大都采用LED数码管作为显示器件,功耗大,不能令消费者满意。为此,我开发了一款多功的数字式电子钟,它可以显示年、月、日、小时、分钟等时间信息,同时可以显示环境的温度信息。还具有按键调时、设定闹铃等功能,而且通过一块3.18V的备用电池,在单片机断电后让时钟芯片DS1307独立工作,因此每次给
4、单片机上电即可显示当前时间,无需调整。时钟采用OLED作为显示器,界面友好,功耗低。- 20 -1.单片机模块的介绍1.1AT89C51AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。1.1.1主要性能参数:与MCS-51产品指令
5、系统完全兼容4k字节可重擦写Flash闪速存储器1000次擦写周期全静态操作:0Hz24MHz三级加密程序存储器1288字节内部RAM32个可编程IO口线2个16位定时计数器6个中断源可编程串行UART通道低功耗空闲和掉电模式1.1.2功能特性概述: AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个IO 口线,两个16位定时计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时计数器,串行通信口及中
6、断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。1.1.3AT89C51方框图1.1.4引脚功能说明Vcc:电源电压GND:地P0 口:P0 口是一组8 位漏极开路型双向IO 口,也即地址数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在FIash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1口:P1是一个带内部上拉电阻的8位
7、双向IO口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。FIash编程和程序校验期间,P1接收低8位地址。P2口:P2是一个带有内部上拉电阻的8位双向IO口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(
8、例如执行MOVXDPTR指令)时,P2口送出高8位地址数据。在访问8 位地址的外部数据存储器(如执行MOVXRI 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3口:P3口是一组带有内部上拉电阻的8 位双向IO 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTLRST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。ALEPROG: 当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存
9、储器,ALE 仍以时钟振荡频率的l6 输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的DO 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。PSEN)输出是外部程序存储器的读选通信号,当AT89C51 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。在此期间,当访问
10、外部数据存储器,这两次有效的PSEN信号不出现。EAVPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000HFFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。XTAL2:振荡器反相放大器的输出端。1.1.5时钟振荡器:AT89C5l 中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1
11、 和XTAL2 分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图5。外接石英晶体(或陶瓷谐振器)及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电容使用30pF10pF,而如使用陶瓷谐振器建议选择40pF10F。用户也可以采用外部时钟。采用外部时钟的电路如图5右图所示。这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。 石英晶
12、体时:C1,C230pF10pF 外部时钟驱动电路陶瓷滤波器:C1,C240pF10pF内部振荡电路 图5由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。1.1.6AT89C51的极限工作参数极限参数工作温度 -55 to +125储藏温度 -65 to +150任一脚对地电压 -1.0V to +7.0V最高工作电压 6.6V直流输出电流 15.0 Ma1.2DS1307是一款低功耗,具有56字节非失性RAM的全BCD码时钟日历实时时钟芯片,地址和数据通过两线双向的串行总线
13、的传输,芯片可以提供秒,分,小时等信息,每一个月的天数能自动调整。并且有闰年补偿功能1.2.1特点可对秒,时,分,每月的天数,月份,每周的天数进行计数,并具有闰年补偿功能。计年上限2100。56字节非失性的RAM,两线串行接口,可编程方波输出,自动掉电检测和切换电路,在电池备份模式下,功耗小于500nA,工业级的工作温度: -40 到80,8脚DIP和SOIC封装1.2.2和单片机连接DS1307典型接线如图1所示。BT1为备用电池,3V,7脚为方波输出,通常把该脚接到单片机的能够产生电平变化中断的引脚,如设置成每秒输出1个方波,则会每秒中断一次,读取时间用以显示。图1中的R1、R2、R4是必
14、须的上拉电阻。1.2.3 I2C时序:DS1307 在 IIC 总线上是从器件,地址固定为”11010000”DS1307 写操作 TWI 被控接收模式 主控器件按如下顺序将数据写入到DS1307 寄存器或内部RAM 中:第一步.START 信号第二步.写SLA+W(0xd0)字节,DS1307 应答(ACK)第三步.写1 字节内存地址(在以下第四步写入的第一字节将存入到DS1307 内该地址处),DS1307应答。第四步.写数据(可写多个字节,每一字节写入后DS1307 内部地址计数器加一,DS1307 应答)第五步.STOP 信号1.3DS18B20DS18B20是常用的温度传感器,具有体
15、积小,硬件开销低,抗干扰能力强,精度高的特点。1.3.1工作原理DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开
16、始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。21.3.2概述DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适
17、用于各种狭小空间设备数字测温和控制领域。1: 技术性能描述、 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 、测温范围 55+125,固有测温误差(注意,不是分辨率,这里之前是错误的)1。、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。、工作电源: 3.05.5V/DC (可以数据线寄生电源) 、在使用中不需要任何外围元件、 测量结果以912位数字量方式串行传送 、不锈钢保护管直径 6 、适用于DN1525, DN40DN
18、250各种介质工业管道和狭小空间设备测温、 标准安装螺纹 M10X1, M12X1.5, G1/2”任选 、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。DS18B20+ 和 Maxim Integrated 信息1Manufactured by Maxim Integrated, DS18B20+ is a 温度传感器.1.3.3应用范围该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域。轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。汽车空调、冰箱、冷柜、以及中低温干燥箱等。供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科 毕业设计 论文 信号发生器 设计 制作 报告
限制150内