开关电源设计步骤(完整版)实用资料.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《开关电源设计步骤(完整版)实用资料.doc》由会员分享,可在线阅读,更多相关《开关电源设计步骤(完整版)实用资料.doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、开关电源设计步骤(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)开关电源设计步骤步骤1 确定开关电源的基本参数 交流输入电压最小值umin 交流输入电压最大值umax 电网频率Fl 开关频率f 输出电压VO(V):已知 输出功率PO(W):已知 电源效率:一般取80 损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB步骤3 根据u,PO值确定输入滤波电容CIN、直流输入电压最小值VImin 令整流桥的响应时间tc=3ms 根据u,查处CIN值 得到Vim
2、in确定CIN,VImin值u(V)PO(W)比例系数(F/W)CIN(F)VImin(V)固定输入:100/115已知23(23)PO90通用输入:85265已知23(23)PO90固定输入:23035已知1PO240步骤4 根据u,确定VOR、VB 根据u由表查出VOR、VB值 由VB值来选择TVSu(V)初级感应电压VOR(V)钳位二极管 反向击穿电压VB(V)固定输入:100/1156090通用输入:85265135200固定输入:23035135200步骤5 根据Vimin和VOR来确定最大占空比Dmax 设定MOSFET的导通电压VDS(ON) 应在u=umin时确定Dmax值,D
3、max随u升高而减小步骤6 确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IPu(V)KRP最小值(连续模式)最大值(不连续模式)固定输入:100/1150.41通用输入:852650.41固定输入:230350.61步骤7 确定初级波形的参数 输入电流的平均值IAVG 初级峰值电流IP 初级脉动电流IR 初级有效值电流IRMS步骤8 根据电子数据表和所需IP值 选择TOPSwitch芯片 考虑电流热效应会使25下定义的极限电流降低10,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)IP步骤9和10 计算芯片结温Tj 按下式结算:TjI
4、2RMSRDS(ON)+1/2CXT(VImax+VOR) 2 f R25式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 如果Tj100,应选功率较大的芯片 步骤11 验算IP IP=0.9ILIMIT(min) 输入新的KRP且从最小值开始迭代,直到KRP=1 检查IP值是否符合要求 迭代KRP=1或IP=0.9ILIMIT(min) 步骤12 计算高频变压器初级电感量LP,LP单位为H 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: 磁芯有效横截面积Sj(cm2),即有效磁通面积。 磁芯的有效磁路长度l(cm) 磁芯在不留间隙时与匝数相关的等效电感AL(H/匝2)
5、 骨架宽带b(mm)步骤14 为初级层数d和次级绕组匝数Ns赋值 开始时取d2(在整个迭代中使1d2) 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入) Ns=0.6(VO+VF1) 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np和反馈绕组匝数NF 设定输出整流管正向压降VF1 设定反馈电路整流管正向压降VF2 计算NP 计算NF 步骤16步骤22 设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度,进行迭代。 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm。使用三重绝缘线时M=0
6、 最大磁通密度BM=0.20.3T 若BM0.3T,需增加磁芯的横截面积或增加初级匝数NP,使BM在0.20.3T范围之内。如BM0.2T,就应选择尺寸较小的磁芯或减小NP值。 磁芯气隙宽度0.051mm40SJ(NP2/1000LP1/1000AL) 要求0.051mm,若小于此值,需增大磁芯尺寸或增加NP值。 初级绕组的电流密度J=(410)A/mm2若J10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J10A/mm2。若J4A/mm2,宜选较细的导线和较小的磁芯骨架,使J4A/mm2;也可适当增加NP的匝数。 确定初级绕组最小直径(裸线)DPm(mm) 确定初级绕组最大外径(
7、带绝缘层)DPM(mm) 根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm) be=d(b2M)然后计算初级导线外径(带绝缘层)DPM:DPMbe/NP步骤23 确定次级参数ISP、ISRMS、IRI、DSM、DSm 次级峰值电流ISP(A)ISP=IP(NP/NS) 次级有效值电流ISRMS(A) 输出滤波电容上的纹波电流IRI(A) 波 次级导线最小直径(裸线)DSm(mm) 次级导线最大外径(带绝缘层)DSM(mm) 步骤24 确定V(BR)S、V(BR)FB 次级整流管最大反向峰值电压V(BR)SV(BR)SVO+VImaxNS/NP 反馈级整流管最大反向峰值电压V(B
8、R)FBV(BR)FBVFB+ VImaxNF/NP 步骤25 选择钳位二极管和阻塞二极管步骤26 选择输出整流管步骤27 利用步骤23得到的IRI,选择输出滤波电容COUT 滤波电容COUT在105、100KHZ时的纹波电流应IRI 要选择等效串连电阻r0很低的电解电容 为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0 COUT的容量与最大输出电流IOM有关 步骤2829 当输出端的纹波电压超过规定值时,应再增加一级LC滤波器 滤波电感L=2.24.7H。当IOM1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈。 为减小L
9、上的压降,宜选较大的滤波电感或增大线径。通常L=3.3H 滤波电容C取120F /35V,要求r0很小 步骤30 选择反馈电路中的整流管 步骤31 选择反馈滤波电容 反馈滤波电容应取0.1F /50V陶瓷电容器 步骤32 选择控制端电容及串连电阻 控制端电容一般取47F /10V,采用普通电解电容即可。与之相串连的电阻可选6.2、1/4W,在不连续模式下可省掉此电阻。 步骤33选定反馈电路 步骤34选择输入整流桥 整流桥的反向击穿电压VBR1.252 umax 设输入有效值电流为IRMS,整流桥额定有效值电流为IBR,使IBR2IRMS。计算IRMS公式如下: cos为开关电源功率因数,一般为
10、0.50.7,可取cos0.5 步骤35 设计完毕在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。它们是最大磁通密度BM(要求BM=0.2T0.3T)、磁芯的气隙宽度(要求0.051mm)、初级电流密度J(规定J=410A/mm2)。这3个参数在设计的每一步都要检查,确保其在允许的范围之内。开关电源功率变压器的设计方法1开关电源功率变压器的特性 功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料
11、,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。 图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效
12、电路。图中:Rsi信号源Ui的内阻Rp一次绕组的电阻Rm磁心损耗(对铁氧体磁心,可以忽略)T理想变压器Rso二次绕组的电阻RL负载电阻C1、C2一次和二次绕组的等效分布电容Lin、Lis一次和二次绕组的漏感Lm1一次绕组电感,也叫励磁电感n理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路 将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL是RL等效到一次侧的阻值,RL=RL/n2,折合后的输出电压Uo=Uo/n。 经过这样
13、处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。(1)上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,
14、C的容抗1/C很小,而Lm1的感抗Lm1很大,相比起来,可将Lm1的作用忽略,而在串联的支路中,Li的作用即较为显著。于是可以把图3所示的等效电路简化成图4所示的等效电路。 图3图2的等效电路 图4图3的简化电路在这个电路中,频率越高,Li越大,而1/C越小,因而高频信号大多降在Li上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数)。但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。在绕制
15、上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、二次绕组交叠绕法等。(2)平顶阶段脉冲的平顶包含着各种低频分量。在低频情况下,并联在输出端的3个元件中,电容C的容抗1/C很大,因此电容C可以忽略。同时在串联支路中,Li的感抗Li很小,也可以略去。所以又可以把图3电路简化为图5所示的低频等效电路。信号源也可以等效成电动势为Usm的直流电源。这里可用下述公式表达Uo=(UsmRL)eT/(RsRL)=Lm1(RsRL)RsRL可见Uo为一下降的指数波形,其下降速度决定于时间常数,越大,下降越慢,即波形失真越小。为此,应尽量加大Lm1,而减小Rs和RL,但这是有限的。
16、如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变坏。 图5图3的低频等效电路 图6脉冲下降阶段的等效电路(3)下降阶段 下降阶段的信号源相当于直流电源Usm串联的开关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。 一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。为了消除下冲往往采用阻尼措施。2功率变压器的参数及公式2.1变压器的基本参数在磁路中,
17、磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T),通常仍用高斯(GS)单位,1T=104GS。另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4NI/li式中:N绕组匝数I电流强度li磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。图7为一典型的磁化曲线。由坐标0点到a点这段曲线称起始磁化曲线。曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a),同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这
18、种材料为硬磁性材料。当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b)。 图7不带气隙的磁滞回线 图8硬/软磁性材料和磁滞回线(a)硬磁材料(b)软磁材料 如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。因为空气隙的磁导率为1,所以有效磁路长度le为le=liilg式中:li磁性材料中的磁路长度lg空气隙的磁路长度i磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度
19、(单位:T)Bm=(Up104)/KfNpSc式中:Up变压器一次绕组上所加电压(V)f脉冲变压器工作频率(Hz)Np变压器一次绕组匝数(匝)Sc磁心有效截面积(cm2)K系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo105式中:j导线电流密度(A/mm2)Sc磁心的有效截面积(cm2)So磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。图
20、9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。(2)避免瞬态饱和 一般工频电源变压器的工作磁通密度设计在BH曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。(3)要考虑温度影响 开
21、关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40考虑,磁心温度可达6080,一般选择Bm=0.20.4T,即20004000GS。(4)合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。4磁心材料的选择软磁铁氧体,由于具有价格低、适应性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开关电源 设计 步骤 完整版 实用 资料
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内