浅谈初中数学几何证明题解题方法--精选(完整版)资料.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《浅谈初中数学几何证明题解题方法--精选(完整版)资料.doc》由会员分享,可在线阅读,更多相关《浅谈初中数学几何证明题解题方法--精选(完整版)资料.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、浅谈初中数学几何证明题解题方法-精选(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。学好几何证明,起步
2、要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在ABC和DCB中,AB = DC,AC =
3、DB,AC与DB交于点MB CA DMN求证:ABCDCB ; 已知条件:文字给出的有:ABC和DCB,AB = DC,AC = DB,AC与DB交于点M 图形给出的有:BC=CB,BMA与CMD是对顶角等等 求证目标是:ABCDCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN等等二、 做几何证明题的一般步骤(一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求图文对照,做到心中有几何基础知识,一边读题一边对照几何图形,要求每读一句题对照图
4、形一次,读懂而且要读完整。审题的过程中,明确已知条件有哪些,才能在后面的证明中有材料可用;找到求证的目标是什么,才能在后面的证明中有的放矢。(二)、寻找证明的思路 几何证明就是根据题目中的已知条件、利用数学公理、定理、法则、公式、图形性质等说明结论正确性的过程。许多学生,遇到几何证明题时,无从下手,茫然不知所措,根本原因就是证明思路不明确。寻找证明的思路,有以下几种方法可供参考: 1.执因索果法 执因索果,是指由已知条件出发,经过逐步推导得出求证目标成立的方法,即由可知逐步推向未知,最后得出求证的目标。 例如:AD是BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BDDC。求证:BE
5、CF 思路:由已知中的“ AD是BAC的平分线,DE垂直AB于点E,DF垂直AC于点F”,根据“角平分线上的点到角两边的距离相等”和“垂直的定义”可以得出:DE=DF,E=DFC90.又加上已知中的“BDDC”可证明“BDEDCF ”(HL),又根据“全等三角形的对应边相等”即可推出求证目标:BECF成立。2.执果索因法 执果索因,也叫“逆推法”,就是由未知到已知的方法,指由题目中要求证明的结论开始,逆向寻找使结论成立的各种可能条件,层层假设层层寻找,最后找到已知条件。 例如:如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB求证:ABE=EAD; 思路:要证明ABE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浅谈 初中 数学 几何 证明 题解 方法 精选 完整版 资料
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内