数学建模试题及答案优秀名师资料(完整版)资料.doc
《数学建模试题及答案优秀名师资料(完整版)资料.doc》由会员分享,可在线阅读,更多相关《数学建模试题及答案优秀名师资料(完整版)资料.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模试题及答案优秀名师资料(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)2004数学建模试题及答案1设某产品的供给函数与需求函数皆为线性函数: ,(p)f(p),(p),3p,4,f(p),kp,9其中为商品单价,试推导满足什么条件使市场稳定。 pk解:设Pn表示t=n时的市场价格,由供求平衡可知: ,(p),f(p) 2分 n,1n3p,4,kp,9n,1n35即: ,,ppnn,1kk3355,?(),,ppnn,2kkkk经递推有: 6分 n,1nn335()(),,,0p,n,1kkkp表示初始时的市场价格 03,1时,即0,k,3,则p收敛,即市场稳定若。 10分
2、当n?时:nk2某植物园的植物基因型为AA、Aa、aa,人们计划用AA型植物与每种基 因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何? 依题意设未杂交时aa 、Aa、AA的分布分别为a,b,c,杂交n代后分别为an bn 000cn (向为白分手) 由遗传学原理有: ,aabc,,,,,000nn,1n,1n,1,1, 4分 babc,,,0,nn,1n,1n,12,1,cabc,,0nn,1n,1n,1,2x,M,X nn,1,,000,1 式中 M,10,2,1,01,,2,nX,M,X递推可得: n0对M矩阵
3、进行相似对角化后可得: 000,,1 ,00,2,001,其相似对角阵 100,,1p,2,10,p ,111,从而 ,nn1Mpp,100100, 1,,0n,2,10(),2101,2,,111111,,000,11nn,1n,1M ()()0,22,11n,1n,1,1()1()1,22,a,0n11n,n,11b,a(),b(),0n00 8分 2211n,n,11c,c,(1,(),a,(1,(),bn00022n,a,0,b,0,c,1当时,。 10分 nnn3试建立人口Logistic(逻辑)模型,并说明模型中何参数为自然增长率,为什么? 解:人口净增长率与人口极限以及目前人口均
4、相关。人口量的极限为M,当前人口数量为N(t),r 为比例系数。建立模型: dN(t)N(t),r,(1,),N(t) dtMN|,N 4分 t,00求解得到 Nm 6分 N(t),N,rtm1,(,1)eN0N(t)注意到当时,并说明r即为自然增长率。 10分 N(t),Mr,(1,),rM41968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。随后,美国又从澳大利亚引入了介壳虫的天然捕食者澳洲瓢虫。后来,DDT被普通使用来消灭害虫,柠檬园主想利用DDT进一步杀死介壳虫。谁料,DDT同样杀死澳洲瓢虫。结果,介壳虫增加起来,澳洲瓢虫反倒减少了。试建立数学模型解释这个现象。 解:依据题
5、意,设介壳虫的数量为x(t),澳洲瓢虫的数量为y(t),则有数模方程组: dx,ax,bxy,dt(1)式中a b c f均大于零。 4分 ,dy,cy,f,ydt,dxax,bxy解方程组(1) ,dy,cy,f,y(a,by)dyfx,c,dx得: yxalny,clnx,fx,by,k acfx,by,y,x,e,k ac,yx,k(3) fcby,ee式(3)给出一族封闭曲线,显然x(t)、y(t)即为以下为周期(T0)的周期函数,由于调查的虫子的数量为一个周期内的均值 T,11yx,(,c)dt则有 ,0TfyT,11xy,(a,)dt 6分 ,0Tbxccx=+lny(T)lny(
6、0)=ff aay=+ln(T)ln(0)=bb,x(t),y(t)当使用杀虫剂DDT后,设杀死介壳虫,澳洲瓢虫 dx,ax,x,bxy,(a,)x,bxy,dt 则有模型为:,dy,cy,y,fxy,(c,,)y,fxydt,,,ca,显然此时有: xyfb即介壳虫的数量增加,澳洲瓢虫的数量反而减小。 10分 5根据水情资料, 某地汛期出现平水水情的概率为0.9, 出现高水水情的概 率为0.05,出现洪水水情的概率为0.05。位于江边的某工地对其大型施工设备拟定三个处置方案: (1) 运走,需支付运费15万元。 (2) 修堤坝保护,需支付修坝费5万元。 (3) 不作任何防范,不需任何支出。
7、若采用方案(1),那么无论出现任何水情都不会遭受损失;若采用方案(2),则仅当发生洪水时,因堤坝冲垮而损失400万元的设备;若采用方案(3),那么当出现平水水位时不遭受损失,发生高水水位时损失部分设备而损失200万元,发生洪水时损失设备400万元。根据上述条件,选择最佳决策方案。 解:我们利用数学期望来评判方案的优劣: 运走 -15 不发生洪水0.95 -5 A -15 修坝 B 发生洪水0.05 -405 平水0.9 0 C 高水0.05 -200 洪水0.05 -400 E(A)=-15 2 E(B)=0.95(-5)+0.05(-405)= -25 5 E(C)=00.75+(-200)
8、0.05+0.05(-400)=-30 8 所以-E(A) -E(B) -E(C),因而A方案是最佳决策方案。 10 6某厂按合同规定须于当年每个季度末分别提供10,15,25,20台同一规格的 柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如下表所示,如果生产出的柴油机当季不交货,每台积压一个季度需储存、维护等费用0.15万元,建立一个数学模型(不要求求解),要求在完成合同的情况下,使该厂全年生产(包括储存、维护)费用最小。 季度 生产能力(台) 三位成本(万元/台) 一 25 10.8 二 35 11.1 三 30 11.0 四 10 11.3 x解:设为第季度生产的用于第j季度交
9、货的柴油机的台数,则由题意 : iijx=1011x+x=151222 (3分) x+x+x=25132333x+x+x+x=2021243444又由生产能力的要求,有 x1044xx+303334 (6分) xxx+35222324xxxx+2511121314c再设表示第季度生产的用于第季度交货的每台柴油机的实际成本,其值如jiij下表: i1 2 3 4 j1 10.8 10.95 11.10 11.25 2 11.10 11.25 11.40 3 11 11.15 4 11.30 ba设表示第j季度的生产能力,表示第季度的合同供应量,则建立本问题模iji型: 44minzcx= ?ij
10、ijij=114s.tx?a?ijij=14x=b (10分) ?ijji=1x?0ij7考虑某地区影响青年生长发育主要因素分析。已知13岁至18岁各年龄组 XX的四项指标为生长发育不良的比率;五项身体素质不及格的比01XX率;营养不良比率;患病比率,数据见下表: 23年龄 13 14 15 16 17 18 40.39 46.08 47.06 47.26 48.98 49.06 X 032.29 34.31 33.33 35.40 37.68 42.16 X 137.25 37.25 25.50 12.75 9.8 16.67 X 26.36 8.23 9.36 7.3 5.2 6.5 X3
11、请利用关联分析法分析影响发育的三项指标哪个对生长发育不良影响大?分辨系数. ,0.5解: (1)进行初始化处理 =(1.,1.1409,1.1651,1.1701,1.2127,1.2147)同理得到 X=(1,1.0626,1.0322,1.0963,1.1669,1.3057)0 X及X, 32(5分) (2)利用公式 +X(k)X(k)X(k)X(k)minminmaxmax0i0iikiiki=(k) i+X(k)X(k)X(k)X(k)maxmax0i0iiki计算各个关联系数: =(1,0.86,0.78,0.87,0.91,0.84) 1=(1,0.77,0.5,0.36,0.3
12、3,0.38) 2=(1,0.76,0.61,0.96,0.55,0.71) (8分) 3(3)计算关联度 n1r=k()利用公式得到 ?iik=1nr=0.763r=0.876r=0.558, 312X从而即五项身体素质不及格的比率对生长发育不良的比率影响最大。(10分) 12004数学建模课程成绩分析 理学院 沈继红 这次考试面对的对象是三个班:03-1121,03-1131,03-1132,共有111人参加考试,课程为考查课。 1. 覆盖面情况分析 数学建模课程共讲授8章内容,其中第一章是数学建模概述,考试中未出题,其它各章皆有试题。 数学建模课程主要是锻炼学生利用所学的数学知识解决实际
13、问题。由于数学系各专业的学生数学专业课相对滞后,因此,很多数学建模所需的知识未学,因此,在学生比较熟悉的初等模型与微分方程模型中出题比例较大;在学生以前未接触的第五章数学规划、第六章图论及第七章概率论与数理统计中,出了一道综合题。试卷共出7道题,具体分布如下: 内容 第二章:第三章:第四章:第五章数学规划、第六章第八章:灰初等模型 微分方程 数学规划 图论及第七章概率统计色系统理论 综合题 题目数 2 2 1 1 1 2. 难易程度分析 由于数学建模课程主要是锻炼学生利用所学的数学知识解决实际问题,而客观世界的实际问题比较复杂,根本不是一次考试可以完成的。因此,我们并未出那种真实的客观实际问题
14、。我们出的题目是参考所讲的书本内容后比较理想化的题目。只要学生认真听讲,认真看书,都可以获得比较理想的成绩。当然,由于毕竟是解决实际问题,因此,题目仍有一定难度。 3. 成绩分析 经统计,考试三个班(03-1121,03-1131,03-1132)成绩分布如下: 等级 优秀 良好 中等 及格 不及格 数目 14 22 35 28 12 考试平均成绩为73.7分,考试成绩分布呈现正态分布。 4. 学生对知识点掌握情况分析 总的看,学生对建立数学模型的基本步骤清晰,对利用什么方法解决实际问题也基本掌握。具体到题目类型上,对需要仔细分析后建模的题目掌握稍差些,对计算性的建模题目掌握得比较好,如对数学
15、规划的建模题目普遍答的不好。 5. 工作中存在的不足和今后努力方向 由于本学期的数学建模课程采用的是双语教学,导致课堂效果不理想。由于是首次进行双语教学,没有任何经验。开始尝试英语电子教案、双语教学(即先用英语讲完后再翻译一遍),起初学生很有兴趣,但坚持不了多久,有很多学生因为听不懂而放弃听课,最后只有30%的学生在坚持听课。我开始改变方式,用汉语电子教案,还是双语讲授,情况略有好转,听课率能上升到60%。最后几堂我干脆都用汉语教学,听课率可上升到90%。因此,双语教学对我还是一个新生事物,我将认真总结双语教学的课堂规律,争取良好的课堂教学效果。 2005 1(10分)设某产品的供给函数,(p
16、)与需求函数f(p)皆为线性函数: ,(p),5p,6f(p),8p,7 其中为商品单价,试判断市场是否稳定并给出推理过程。 p2(10分)某植物园的植物基因型为AA、Aa、aa,人们计划用AA型植 物与每种基因型植物相结合的方案培育后代(遗传方式为常染色体遗传),经过若干代后,这种植物后代的三种基因型分布将出现什么情形?总体趋势如何? 3(10分)建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的 捕捞量。 4. (10分)试建立Lanchester游击战模型,并在无自然损失及没有增援的条件下求解模型,给出敌对双方获胜的条件。 5. (10分)根据水情资料, 某地汛期出现平水水情的概率为
17、0.7, 出现高 水水情的概率为0.2, 出现洪水水情的概率为0.1。.位于江边的某工地对其大型施工设备拟定三个处置方案: a) 运走,需支付运费20万元。 b) 修堤坝保护,需支付修坝费8万元。 c) 不作任何防范,不需任何支出。 若采用方案(1),那么无论出现任何水情都不会遭受损失;若采用方案(2),则仅当发生洪水时,因堤坝冲垮而损失600万元的设备;若采用方案(3),那么当出现平水水位时不遭受损失,发生高水水位时损失部分设备而损失300万元,发生洪水时损失设备600万元。根据上述条件,选择最佳决策方案。 6(10分)由七种规格的包装箱要装到两辆铁路平板车上去。包装箱的宽和高时一样的,但厚
18、度(t,以厘米计)及重量(,以公斤计)是不同的。下表给出了每种包装箱的厚度、重量以及数量。每辆平板车有10.2米的地方可用,C,来装包装箱(像面包片那样),载重为40吨。由于当地货运得限制,对C56C类的包装箱的总数有一个特别的限制:这类箱子所占的空间(厚度)不能超7过302.7厘米。试把包装箱(见下表)装到平板车上去使得浪费的空间最小。 CC C CC CC 1 234 56 7 t(厘米) 48.7 52.0 61.3 72.0 48.7 52.0 64.0 W(公斤) 2000 3000 1000 500 4000 2000 1000 件数 8 7 9 6 6 4 8 7(10分)以你的
19、专业知识举一个灰色系统理论方面的问题,论述其灰色特征,并提出你的解决办法。 2005 1.解:由题意: 183(p),5(p,),,313 183f(p),8(p,),313183需求与供给有交点, (,)1313t,n,tPn,把时间区间等分,为步长,为时的价格,则由供求平衡的需要,nnn由于供给由上一时刻的需求决定于是有 ,(P),f(P) (4分) n,1n1183183即递推得 f(P),8(P,),,5(P,),,(P)nnn,1n,113131313511nP 为初始价格 (8分) P,P,,()()0n0813135n,P1 当,收敛,市场稳定。 (10分) n8a,b,cnAA
20、,Aa,aa2解:设分别表示第代中,占总体的百分率, nnna,b,c,1则 bnnn考虑第代基因型与第代的关系,选用AA型植物培育后代,则 n,11,aabc,1,0nn,1n,1n,1,2,1, (4分) babc,0,1,nn,1n,1n,12,1,cabc,0,0,nn,1n,1n,1,2,AA1AA1,11 AA,AaAAAA,AaAa,22,aa0aa0,1,10,2a,n,nnn()(1)(0),?X,MX,MX1,(n)b,X令 设 则 M,01,nT(0),2X,(a,b,c),000,c1n,,00,2,(6分) ,1M,PDP相对M进行相似变换,对角仪, 111,1P,P
21、,0,1,2 ,001,100111111,1n,1nn,1n故 MPDPPDP,(),0,1,20()00,1,2,2,001001001,11,111,nn,122,11, (8分) ,0nn,1,22,000,11,aabcbc,,,n00000nn,1,22,11, bbc,,,n00nn,122,c0,n,a,1n,b,0c,0令,有 ,经过若干代后,将全部培育成AA型植nnn物,Aa型与aa型全部消失。 (10分) xx3解:设某水域现有鱼量,由于受资源限制所能容纳的最大鱼量,高自然mr,捕捞增长率,按人口的逻辑模型建立微分方程。 增长率kdxx ,rx(1,),kx (2分) d
22、txmr,kdxx要保持鱼量平衡,设平衡点为,解得 ,0x,x00mdtrdxx设考虑在的泰勒展式 f(x),f(x),0dt,f(x),f(x)(x,x),0(x,x)f(x),k,r 0000,f(x)x,xx当0时 与同号 为不稳定平衡点 f(x)000,f(x)x,xx当0时 与异号 为稳定平衡点 f(x)000,rf(x)0即 (6分) k0xrf(x),rx(1,)f(x),kx设 由于 k12xmf(x)f(x)f(x)曲线与有交点,因在原点切线为 y,rx121xm解得,易知当时,取得最大捕捞量 x,0211r, k,rf(x),rx,x20m224r最大捕捞量为 (10分)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 试题 答案 优秀 名师 资料 完整版
限制150内