基于光纤传感器的位移测试系统的设计学位论文.doc
《基于光纤传感器的位移测试系统的设计学位论文.doc》由会员分享,可在线阅读,更多相关《基于光纤传感器的位移测试系统的设计学位论文.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、济南大学毕业设计毕业设计题 目 基于光纤传感器的 位移测量系统的设计 学 院 机械工程学院 专 业 机械工程及自动化 班 级 机自0702班 学 生 王培荣 学 号 20070403189 指导教师 马玉真 二一一年 五 月二十日- 1 -济南大学毕业设计1 前言1.1研究现状位移是工业产品的重要特征参数,以往典型的测位移方法是依靠机械接触,但在现代工业生产中,越来越高的加工精度和技术指标要求有新型、快速、柔性好、能直接在生产过程中进行非破坏性产品质量检测的测量方法。因此新型的测量方式越来越得到人们的需求。随着机械工业的需要,大位移的测量也在逐渐向微小位移的方向发展。位移的测量的方式已经逐步由
2、以前简陋的纯手工测量转变为较精准的系统测量,而测量方法也由单纯的机械测量衍化为由光、电等技术参与的复杂测量。随着现代科学技术的发展, 信息的获得显得越来越重要。光纤传感器是继光学、电子学为一体的新型传感器, 与以往的传感器不同, 它将被测信号的状态以光信号的形式取出。传感器正是感知、检测、监控和转换信息的重要技术手段。光信号不仅能被人所直接感知, 利用半导体二极管如光电二极管等小型简单元件还可以进行光电、电光转换, 极易与一些电子装配相匹配, 这是光纤传感器的优点之一;另外光纤不仅是一种敏感元件, 而且是一种优良的低损耗传输线; 因此, 光纤传感器还可用于传统的传感器所不适用的远距离测量。近年
3、来光纤传感器得到了越来越广泛的应用。1.1.1 国内研究现状清华大学李达成等专家成功研制在线测量超光滑表面粗糙度的激光外差干涉仪,该仪器用稳频半导体激光器为光源,其光路设计提高了抗外界环境干扰的能力,其横向和纵向分辨率分别为0.73m和0.39nm。李岩等提出了一种基于频率分裂激光器的光强差法的纳米技术测量原理。天津大学刘安伟等专家在量子隧道效应的基础上,创建了适用于平坦表面的用于扫描隧道显微镜微测量轮廓的数学模型,仿真结果较好地反映了扫描隧道显微镜对样品表面轮廓的测量过程。国内的江西科学院、清华大学、南昌大学等单位采用扫描探针显微镜系列,如原子力显微镜、扫描隧道显微镜等,对高精度纳米和亚纳米
4、量级的光学超光滑表面的粗糙度和微轮廓进行测量研究。中国计量学院朱若谷提出了一种能补偿环境影响、插入光纤传光介质的补偿式光纤双法布里珀罗微位移测量系统,适合于纳米级微位移测量,可用于检定其它高精度位移传感器、几何量计量等。中国科学院北京电子显微镜实验室成功研发了一台利用光学偏转法检测的原子力显微镜,通过对光盘、云母、光栅等样品的观测证明该仪器达到原子分辨率的水平,仪器的最大扫描范围可达到7m7m。中国计量学院朱若谷、浙江大学陈本永等专家提出了一种通过测量双法布里一珀罗干涉仪透射光强基波幅值差或基波等幅值过零时间间隔的方法进行纳米测量的理论基础,给出了检测扫描探针振幅变化的新方法。浙江大学卓永模等
5、成功研制双焦干涉球面微观轮廓仪,解决了对球形表面微观轮廓进行亚纳米级的非接触精密测量问题,该仪器具有0.1nm的纵向分辨率及小于2m的横向分辨率。中国计量科学研究院研制了用于研究多种微位移测量方法标准的高精度微位移差拍激光干涉仪。中国计量科学研究院、清华大学等研制了用于大范围纳米测量的差拍法珀干涉仪,其分辨率为0.3nm,测量范围11m,总不确定度优于35nm。1.1.2 国外研究现状国外于1982年发明并使其发明者Binnig和Rohrer(美国)荣获1986年物理学诺贝尔奖的扫描隧道显微镜(STM)。1986年,Binnig等人利用扫描隧道显微镜测量近1018N的表面力,将扫描隧道显微镜与
6、探针式轮廓仪相结合,发明了原子力显微镜,在空气中测量,达到横向精度3n m和垂直方向01n m的分辨率。California大学SAlexander等人利用光杠杆实现的原子力显微镜首次获得了原子级分辨率的表面图像。日本SYoshida主持的Yoshida纳米机械项目主要进行以下二个方面的研究: 利用激光干涉仪测距,在激光干涉仪中其开发的双波长法限制了空气湍流造成的误差影响;其实验装置具有1n m的测量控制精度; 利用改制的扫描隧道显微镜进行微形貌测量,已成功的应用于石墨表面和生物样本的纳米级测量。 英国:国家物理研究所对各种纳米测量仪器与被测对象之间的几何与物理间的相互作用进行了详尽的研究,绘
7、制了各种纳米测量仪器测量范围的理论框架,其研制的微形貌纳米测量仪器测量范围是0.01nm3nm和0.3nm100nm。Queensgate仪器公司设计了一套纳米定位装置,它通过压电驱动元件和电容位置传感器相结合的控制装置达到纳米级的分辨率和定位精度。日本国家计量研究所研制了一套由稳频塞曼激光光源、四光束偏振迈克尔干涉仪和数据分析电子系统组成的新型干涉仪,该所精密测量已涉及一些基本常数的决定这一类的研究,如硅晶格间距、磁通量等,其扫描微动系统主要采用基于柔性铰链机构的微动工作台。德国:TGddenhenrich等研制了电容式位移控制微悬臂原子力显微镜。Warwick大学的Chetwynd博士利用
8、X光干涉仪对长度标准用的波长进行细分研究,他利用薄硅片分解和重组X光光束来分析干涉图形,从干涉仪中提取的干涉条纹与硅晶格有相等的间距,该间距接近02nm,他依此作为校正精密位移传感器的一种亚纳米尺度。在PTB进行了一系列称为1nm级尺寸精度的计划项目,这些研究包括:提高直线和角度位移的计量;研究高分辨率检测与表面和微结构之间的物理相互作用,从而给出微形貌、形状和尺寸的测量。目前,已完成亚纳米级的一维位移和微形貌的测量。1.1.3 微位移测试的发展纵观微位移测量技术发展的历程,它的研究主要向两个方向发展: 一是发展建立在新概念基础上的测量技术,利用微观物理、量子物理中最新的研究成果,将其应用于测
9、量系统中,它将成为未来微位移测量的发展趋向; 二是在传统的测量方法基础上,应用先进的测试仪器解决应用物理和微细加工中的微位移测量问题,分析各种测试技术。提出改进的措施或新的测试方法。 但微位移测量中存在的一些技术问题阻碍了它的快速发展。相应微位移测量环境的建立一直是将微位移测量的目标实现亟待解决的问题之一,而且在不同的测量方法中需要的微位移测量环境也是不同的,目前应该建立一个合适的微位移环境,寻求新的测量原理和多种技术的综合应用。同时,对微位移材料和微位移器件的研究和发展来说,表征和检测起着至关重要的作用。由于人们对微位移材料和器件的许多基本特征、结构和相互作用了解得还不很充分,使其在设计和制
10、造中存在许多的盲目性,现有的测量表征技术就存在着许多问题。此外,由于微位移材料和器件的特征长度很小,测量时产生很大扰动,以至产生的信息并不能完全代表其本身特性。这些都是限制微位移测量技术通用化和应用化的瓶颈,因此,微位移尺度下的测量无论是在理论上,还是在技术和设备上都需要深入研究和发展。1.2选题意义传感器作为信息系统的源头,在很大成分上是决定系统特性和性能指标的关键部件。在客观对象的监测、测试、检测、测量、导航、定位、控制、分析、制导、跟踪及健康管理等装置中,传感器是不可或缺的且在一定程度上是能够决定系统性能的重要组成部分。因此,不仅是元器件、材料和部件,还是系统研发者现在都对传感器进展保持
11、相当高关注度。传感器是工程和科学共同孕育出的产品,既依赖于科学发展的新现象和新规律,又依赖于新型工程的技术和工艺。与其它传感器相比,光纤传感器具有广阔的应用前景和独特的优点,随着目前国内经济的高速发展,光纤传感器的市场前景夜已经变得非常诱人。从目前的发展现状及文献报道情况来看光纤传感器, 它已经具有了相当广阔的应用空间, 其研究方向的心目标是:(1)开展对采用多路复用技术的光纤传感器系统的研究, 特别是将其于微机相结合组成光纤遥测系统以进行多参数测量与控制。(2)解决光纤传感器的实用化问题, 主要是长时间的漂移问题。(3)基础技术及元器件进一步研究的发展。与有源及无源期间的稳定性和可靠性密切相
12、关的是光纤传感器的性能, 然而随着基础科学技术的不断进步、元器件性能的不断完善, 光纤传感器必然将得到更广泛的应用。光纤位移传感器样机示意图如图1所示。图1 光纤位移传感器样机1.3 设计要求该设计题目属于机电一体化系统设计的内容,应用到课程包括:测试技术、机电一体化系统设计、机械设计、机械原理、机械零件、机电传动、机械制图、理论力学、材料力学、机械制造及基础、互换性与技术测量、数控技术、计算机辅助电路设计、计算机辅助绘图等。根据所学专业知识,完成基于光纤传感器的微位移测量系统的的整体设计,包括微小位移的产生和进给系统、传感器安装和固定系统、手动控制系统等几个部分。该系统的指标如下:1系统最大
13、检测位移为3mm;2位移进给采用螺旋传动;3被测位移装置可以在导轨槽内移动,实现大位移的调整,传感器可以适当上下调整;4位移进给装置应具有读数功能。2 光纤位移测量系统的整体设计2.1 方案的选择传动方式的选择螺旋传动是利用螺杆和螺母的啮合来传递动力和运动的机械传动。主要用于将旋转运动转换成直线运动,将转矩转换成推力。按工作特点,螺旋传动用的螺旋分为传力螺旋、传导螺旋和调整螺旋。传力螺旋:以传递动力为主,它用较小的转矩产生较大的轴向推力,一般为间歇工作,工作速度不高,而且通常要求自锁,例如螺旋压力机和螺旋千斤顶上的螺旋。传导螺旋:以传递运动为主,常要求具有高的运动精度,一般在较长时间内连续工作
14、,工作速度也较高,如机床的进给螺旋(丝杠)。调整螺旋:用于调整并固定零件或部件之间的相对位置,一般不经常转动,要求自锁,有时也要求很高精度,如机器和精密仪表微调机构的螺旋。按螺纹间摩擦性质,螺旋传动可分为滑动螺旋传动和滚动螺旋传动。滑动螺旋传动又可分为普通滑动螺旋传动和静压螺旋传动。螺旋传动应用示意图如图2.1、图2.2所示:图2.1 螺旋传动应用示意图图2.2 螺旋传动应用示意图光纤传感器的选择光纤的纤径R是一个很重要的参数,从传感器的线性范围和灵敏度来考虑选用芯径较大的光纤有益于测量。另一方面光纤与光源的光能耦合的损失很大,射向被测面所反射回来的光能被光纤接受的光相当微弱,易被背景光淹没,
15、即信噪比很低。这将增加光电转换器件和前置放大以及模拟信号处理部分的难度,因此选用大芯径的光纤是有必要的。但因为应用场合的影响,光纤直径过大可弯半径有限,一些检测空间狭小的地方就不能用。另外光纤芯径大要求被测反射面也大,如果被测反射面小将增加误差不适合检测表面小的被测面。考虑到很多因素本文中所采用的光纤结构的具体的光纤参数如下:NA=0.63 r=23.5m c=1.5m,相邻光纤轴间距l=53m 纤端出射光强模型基于准高斯分布=1 =0.05,其中NA 为数值孔径r 为纤心的半径c 为光纤包层的厚度玻璃光纤的半径为25m。光缆的选择:一般,石英玻璃光纤由于其低损耗、高带宽而用于长距离通信链路,
16、例如,以太网和FDDI标准指定采用多模 62.5125m石英玻璃光纤。这些细纤芯的光纤需要高精度连接器以减少耦合损耗,对于工业应用,需要低成本的光缆和连接器。因此,1mm的 POF(Plymer Optical Fibers)和200m的HCS(Hard Clad Silica)光纤是最好选择,它们均属于阶跃折射率的多模光纤。1mm POF的典型损耗值应在650nm,波长时为0.2dBm,而200m HCS光纤在650mm波长典型损耗值为8dBkm,在820nm波长损耗时更少。HCS光纤的核心是石英玻璃,包层是专用的高强度聚合物,不仅增加了光纤的强度,而且还能防潮防污染,外护套则是2.2mm聚
17、氯乙烯。HCS光纤可在一4085的温度范围内工作,架设温度范围为一20一+85,在性能与价格上均可满足系统要求。光纤传感器实物图如图2.3所示,光纤传感器数字信号处理系统的实验电路板图2.4所示:图2.3 光纤传感器实物图图2.4 光纤传感器数字信号处理系统的实验电路板 此方案的优点有:简单、切实地解决近距离设定时光量饱和、远距离设定时受光量不足的问题。同时,还避免了以往模式切换方式下调整功率所带来的响应速度变化。此方案可以更好的对微小位移的变化进行全方位的检测及测量,达到高速、高精度的模拟量输出。同时还可以达到远程输入,远程输出的目的。并且,此方案非常适合实际生产,实际应用价值高,所以选用此
18、方案来进行有效地传动及测量。2.2 系统的整体设计2.2.1 数据采集对于该测试系统而言,要做到高的精度才能保证系统的准确性。为此我们需要采集光纤传感器来检测系统产生的微小位移。再利用数据线将光纤传感器采集到的信息输送到信息处理中心,通过PC机来实现数据的存储和显示,以此来潘丹微小位移的产生和变化。2.2.2 机械结构与固定对基于光纤传感器的位移检测系统,需要通过光纤传感器来检测并采集数据,为了能够获得较为精确地变化量比较小的微小位移,系统采用传统的机械传动装置,即利用手动装置来带动整个系统的运动。工作时,通过手动摇柄的转动,来带动丝杠的螺旋传动来使工作台移动,从而产生微小位移。再通过光纤传感
19、器来进行数据的检测以及处理。2.2.3 数据处理由于通过传感器采集的信号在一般情况下是模拟信号不能被计算机识别,且采集的信号功率较小。所以在一般情况下的数据测量系统首先利用光纤传感器来采集微小位移信号,将采集到的信号经测量电路转化为电压信号并且进行放大,然后将放大的模拟信号传动给A/D转换器,转化为数字信号后输送给单片机,然后利用单片机进行数据处理,并最终在PC机显示器上显示出所测得的微小位移。2.2.4 支架固定机构 为了减小装置系统在检测过程中发生机构移动给测量精度所带来的损失,所以装置系统底座采用比较大的质量来使机构紧固在实验台上,以完成每个测量位置的测量精度的要求。2.2.5 数据显示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 光纤 传感器 位移 测试 系统 设计 学位 论文
限制150内