【强烈推荐】八年级数学三角形辅助线大全(精简、全面)(完整版)资料.doc
《【强烈推荐】八年级数学三角形辅助线大全(精简、全面)(完整版)资料.doc》由会员分享,可在线阅读,更多相关《【强烈推荐】八年级数学三角形辅助线大全(精简、全面)(完整版)资料.doc(84页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【强烈推荐】八年级数学三角形辅助线大全(精简、全面)(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D为ABC内任一点,求证:BDCBAC证法(一):延长BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC证法(二):连结AD,并延长交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCB
2、AC2.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD为ABC的中线且1 = 2,3 = 4,求证:BECFEF证明:在DA上截取DN = DB,连结NE、NF,则DN = DC 在BDE和NDE中,DN = DB1 = 2ED = EDBDENDEBE = NE同理可证:CF = NF在EFN中,ENFNEFBECFEF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD为ABC的中线,且1 = 2,3 = 4,求证:BECFEF证明:延长ED到M,使DM = DE,连结CM、FMBDE和CDM中, BD = CD1 = 5ED
3、 = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBECFEF(此题也可加倍FD,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD为ABC的中线,求证:ABAC2AD证明:延长AD至E,使DE = AD,连结BEAD为ABC的中线BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC
4、2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:abab = cab = cd例:已知,如图,在ABC中,ABAC,1 = 2,P为AD上任一点,求证:ABACPBPC证明:截长法:在AB上截取AN = AC,连结PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC补短法:延长AC至M,使AM = AB,连结PM在ABP和AMP中AB = AM 1 = 2AP =
5、 APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC练习:1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分线,并且它们交于点O求证:AC = AECD2.已知,如图,ABCD1 = 2 ,3 = 4. 求证:BC = ABCD 6.证明两条线段相等的步骤:观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.如果没有相等的线段代换,可设法作辅助线构造全等三角形.例:如图,已知,BE、CD相交于F,B = C,1 = 2,求证:DF = EF 证明:ADF =B3
6、 AEF = C4又3 = 4B = CADF = AEF在ADF和AEF中ADF = AEF1 = 2 AF = AFADFAEFDF = EF7.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等.例:已知,如图RtABC中,AB = AC,BAC = 90o,过A作任一条直线AN,作BDAN于D,CEAN于E,求证:DE = BDCE证明:BAC = 90o, BDAN12 = 90o 13 = 90o2 = 3BDAN CEANBDA =AEC = 90o在ABD和CAE中,BDA =AEC2 = 3AB = ACABDCAEBD = AE且AD = CEAEA
7、D = BDCEDE = BDCE8.三角形一边的两端点到这边的中线所在的直线的距离相等.例:AD为ABC的中线,且CFAD于F,BEAD的延长线于E求证:BE = CF 证明:(略)9.条件不足时延长已知边构造三角形.例:已知AC = BD,ADAC于A,BCBD于B求证:AD = BC证明:分别延长DA、CB交于点EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC10.连接四边形的对角线,把四边形问题转化成三角形来解决问题.例:已知,如图,ABCD,ADB
8、C 求证:AB = CD 证明:连结AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD练习:已知,如图,AB = DC,AD = BC,DE = BF,求证:BE = DF11.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.例:已知,如图,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE =
9、FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE练习:已知,如图,ACB = 3B,1 =2,CDAD于D,求证:ABAC = 2CD12.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:A = D证明:(连结BC,过程略)13.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如
10、图,AB = DC,A = D 求证:ABC = DCB 证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)14.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.例:已知,如图,1 = 2 ,P为BN上一点,且PDBC于D,ABBC = 2BD,求证:BAPBCP = 180o证明:过P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o
11、在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o练习:1.已知,如图,PA、PC分别是ABC外角MAC与NCA的平分线,它们交于P,PDBM于M,PFBN于F,求证:BP为MBN的平分线2. 已知,如图,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分线,D是AC上一点,若CBD = 20o,求CED的度数。15.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE
12、,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)过A作AEBC于E(过程略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF
13、BC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DN
14、B = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = EC DNFECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2
15、AED = 90o 即FED = 90o DEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过点A作AMBC交DE于M,(过程略)常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o PCB = 30o 求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)=
16、 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB
17、 = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o16.有二倍角时常用的辅助线构造等腰三角形使二倍角是等腰三角形的顶角的外角例:已知,如图,在ABC中,1 = 2,ABC = 2C,求证
18、:ABBD = AC证明:延长AB到E,使BE = BD,连结DE则BED = BDEABD =EBDEABC =2EABC = 2CE = C 在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作BAC的平分线AE交BC于E,则BAE = CAE = DBCBDACCBD C = 90oCAEC= 90o AEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAE
19、ABC = ACB加倍小角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作FBD =DBC,BF交AC于F(过程略)17.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.例:已知,如图,ABC中,AB = AC,BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E求证:BF =FC证明:连结AF,则AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C = 30oAF = FCBF =F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 强烈推荐 八年 级数 三角形 辅助线 大全 精简 全面 完整版 资料
限制150内