本科毕业设计---势阱中粒子运动的能级和波函数.doc
《本科毕业设计---势阱中粒子运动的能级和波函数.doc》由会员分享,可在线阅读,更多相关《本科毕业设计---势阱中粒子运动的能级和波函数.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、晋中学院本科生毕业论文设计晋 中 学 院本科毕业论文(设计) 题 目 势阱中粒子运动的能级和波函数 院 系 物理与电子工程学院 专 业 物理学 2晋中学院本科生毕业(设计)论文一维势垒 一维散射中的几率密度摘 要: 利用数值计算方法研究了粒子在一维“方形”势垒中运动时的粒子的几率分布,并给出了几率密度图.从这些图我们可以清楚的看出不同能量的粒子在“方形”势垒散射时的几率分布情况, 并讨论了透射系数、反射系数与势垒宽度的关系.关键词:几率密度; 势垒 几率密度; 阶梯势; 势垒; 几率密度阶梯势; 势垒; 几率密度; 阶梯势; 势垒One-dimensional square potential
2、s One-dimensional square potentials Authors Name: JianPing Gong Tutor: JianPing GongABSTRACT: In this paper, we outline the quantitative calculation of the stationary states of the particle. We limit ourselves to one-dimensional models. We shall give the results of this calculation for a certain num
3、ber of simple cases, and discuss their physical implications. We study the motion of a particle in a “square potential” whose rapid spatial variation for certain values of introduce purely quantum effects. We consider the quantum mechanics of a particle which encounters the potential step with and .
4、 We next study more complicated potential form, the rectangular potential barrier. We draw as a function of by numerical calculation. From this figure, we can see clearly an important difference between classical mechanics and quantum mechanics.“Keywords” 用小三号号“Times New Roman”加粗顶格,内容用四号“Times New R
5、oman”,段前空0行,行距采用固定值22磅,采用悬挂缩进(约9.2字符)与上面的内容对齐.单词后加分号后打一个空格,然后再写下一个词,最后一个词不用分号KEYWORDS:Probability density; Potential steps; Potential barriers; Classical mechanics; Quantum mechanics目录前空一行,三号、黑体、居中、1.25倍行距,目录两字间空四格、与正文空一行目 录引 言11 势垒模型与量子力学方程2引言总结第几章等一级标题用小三号、宋体加粗、顶格、单倍行距,章标号用阿拉伯数字, 数字用Times New Roma
6、n字体,二级标题不加粗。1.1势垒模型21.1.1 势垒模型21.1.1.1 势垒模型21.2量子力学方程与边界条件32 阶梯势垒散射52.1 模型与方程52.2 的情况62.3 的情况82.4 的情况93 方形势垒散射123.1模型与方程123.2情况123.3情况153.4 情况16总 结17致 谢17注 释17参考文献17附录19引言、每章题目、总结格式:上面输入一空行,居中、三号黑体加粗,单倍行距与段后空0.5行.级别为标题1引 言论文中的插图,除示意图可用Word软件中的绘图工具绘制外,函数图应用专门绘图软件绘制.所有插图要按章统一编号,并与文中对应.每幅图要有简要说明,说明文字用五
7、号字,行距采用最小值0磅. 数字用Times New Roman字体、文字用宋体,位于插图下方中央.图的大小要适中,当图较小时一般置于版面右侧.注意与左侧空出0.5厘米. 插图中所插字符应用公式编辑器编好后,转成图片格式,其字符大小为10.5磅.在解释文字中所用的数学字符也要用公式编辑插入,字号大小为10.5磅.图0.1 粒子穿越势垒时的波动图像引文文献号用上标加方括号标出引言一般包括课题问题的提出、前人在该问题有关领域已经做过的工作和成果的概述、本课题的内容和采用的方法、本论文的结构说明等。首行缩进两字符,小四号宋体.对只有单行公式或无公式的段落如,行距一般采用固定值22磅,此值为了页面美观
8、可适当调整.一维势垒散射问题属于量子力学非束缚定态的基本问题,几乎所有的量子力学著作中均作为主要内容加以阐述1-5. 对该问题深入讨论可以初步掌握经典力学与量子力学所给出的粒子的穿越势垒的不同行为的基本特征.但是大部分都是着重描述粒子在势垒存在时的穿过势垒的透射系数或被势垒反射回来的反射系数,而对于势垒存在时微观粒子的几率分布的情况却描述较少,由其对于势垒中粒子的几率分布情况更是很少涉及.并且一些书中1-2给出粒子穿越势垒时的波动图像存在问题(如图0.1).因为对于非束缚定态问题粒子的波函数是复函数,一般情况下很难在二维图像中表示.如果说这里给出的是粒子的几率分布图像,那么由于穿过势垒后波函数
9、一般形式是,所以几率分布显然应该是一常数,并不存在任何的波动.为了能够对粒子在穿越势垒时的几率分布有一个清晰的认识,我们分别对粒子穿越阶梯形势垒和方形势垒的不同情况下的几率分布通过计算机数值计算给出了相应的几率密度图像.本文讨论的阶梯势垒与方形势垒由于模型简单,数学计算相对容易而使得物理图像清晰,对于深入理解粒子穿越势垒时的物理图像有一深刻正确的了解可以起到一定的作用.正文从引言开始起编页码,统一采用单面打印,页码右对齐.每章后另起一页,用插入分页符的方法数字与标题间空一格, 数字用Times New Roman字体,文字用黑体加粗,字号均为三号.居中.1 势垒模型与量子力学方程1.1 势垒模
10、型1.1.1 势垒模型1.1.1.1 势垒模型二级标题级别为标题2,格式左对齐首行缩进2字符(或1.7字符,与正文首行对齐即可, 数字用Times New Roman字体,文字用黑体加粗,字号均为四号,数字与文字空一格.单倍行距.如在章标题下或位于本页第一行,段前空0行,段后空0.5行,如在文中位置时采用段前空1行,段后空0.5行.三级标题级别为标题3,格式左对齐首行缩进2字符, 数字用Times New Roman字体,文字用宋体加粗,字号均为小四号,数字与文字空一格.单倍行距.如在章标题下或位于本页第一行,段前空0行,段后空0.5行,如在文中位置时采用段前空1行,段后空0.5行.四级标题级
11、别为标题4,格式左对齐首行缩进2字符, 数字用Times New Roman字体,文字用宋体加粗,字号均为小四号,数字与文字空一格.单倍行距.如在章标题下或位于本页第一行,段前空0行,段后空0.5行,如在文中位置时采用段前空1行,段后空0.5行.一般不要用四级如果空间中有两个区域, 并且在这两个区域内粒子的势能都比它在这两个区域的分界面上的势能小, 我们就说, 这两个区域是由一个势垒分隔开的.图1.1 一维势垒图1.1所示的一维势垒可以作为一维势垒最简单的例子. 纵轴上标出势能, 它是粒子的坐标的函数. 在点上势能具有极大值. 整个空间在这一点上分为两个区域: 和, 在这两个区域内. 如果我们
12、根据经典力学来考察粒子在场中的运动, 我们马上可以说明“势垒”的意义. 粒子的总能量等于 (1.1)式中为粒子的动量, 为它的质量. 从(1.1)解出动量. 我们得到 (1.2)上式中的符号应该根据粒子的运动方向来选择. 如果粒子的能量大于势垒的“高度”, 则当粒子的初始动量时, 粒子可以毫无阻碍地从左边向右边通过势垒; 而当粒子的初始动量时,粒子通过势垒的方向正好相反.假设粒子是从左向右运动的, 其总能量小于. 于是在某一点, 势能, 粒子将停止下来. 它的全部动能转化为势能, 因而运动将向相反的方向进行:是反转点. 因此, 当时,从左边来的粒子不能穿过势能极大值的区域, 因而便不能进入第二
13、个区域去. 相似地, 如果粒子是从右向左运动的,而且, 则它便不能进入第二个反转点后面的区域去, 因为在点上 (参阅图1.1). 因此对于所有能量小于的粒子来说,势垒都是一个“不透明”的壁垒. 相反地, 对于能量大于的粒子, 势垒则是“透明”的. 这也就说明了“势垒”这个名称的来源.为了进一步理解势垒这个概念, 我们想象一个质量为, 在图1.2所表示的那种力函数作用下的粒子. 为了页面统一,所有正文内容(文字图表均就在此线框内,最上(下)面的线及左右线与页面标志对齐.注意要使内容与横线的内侧线对齐,如果首行为多行公式,应在公式前插入一空行,此空行的行距为固定值5磅.当下端内容与下面的内侧线有空
14、白时,要行当调整本面中的行距使之对齐.(另起一页时除外), , , , , ,图1.2 一维势垒粒子受力分析在横坐标为和的两个点之间, 粒子受到一个力的作用, 此力的指向与轴的单位矢量相反在这个区域之外, 势能或为一常数, 而力等于零.论文中的公式统一用Word软件中的公式编辑器书写.主要公式要按章统一进行编号并与论文中的叙述一致,编号数字用Times New Roman字体,右对齐.未编号的公式要居中.如单行公式行距采用固定值22磅,多行公式行距采用最小值0磅.在时刻,以速度, 在横坐标为的点处接近这一区域的粒子由于的作用而减速,由此得运动方程,只有当方程,具有实根时,粒子才能到达横坐标为的
15、点, 这就要求,二级标题级别为标题2,格式左对齐首行缩进2字符(或1.8字符,与正方首行对齐即可), 数字用Times New Roman字体,文字用黑体加粗,字号均为四号,数字与文字空一格.单倍行距.如在章标题下或位于本页第一行,段前空0行,段后空0.5行,如在文中位置时采用段前空1行,段后空0.5行.如果不是这样, 粒子的能量小于 (1.3)这个粒子就不可能到达势能变化区的端点. 因而粒子要被反射回来, 并重新向反向运动. 使趋于零,而保持值不变, 力就变的无限大, 作用区变得无限薄. 方程(1.3)所表示的结果依旧成立, 因为它与宽度无关.1.2量子力学方程与边界条件如果我们谈的是微观粒
16、子在微观场中的运动, 也就是在谈到不能略去量子效应的运动时. 在势垒附近发生的现象就完全不同了.在这种情况下, 与经典力学的结论相反, 能量大于势垒高度的粒子有一部分为势垒反射,而能量小于的粒子也有一部分会穿过势垒.在量子力学里, 必须知道波函数, 因此必须要解薛定谔方程 (1.4)一维散射问题是一个非束缚态问题(与时间无关, 而是正的).因此令 (1.5)由此得到 (1.6)按照势能的形式, 方程(1.6)一般需要分成几个部分求解.将上式改写成如下形式 (1.7) (1.8)为了确定波函数要满足的边界条件, 我们把和看作是的缓变函数, 在图1.2中为方便取, 于是,在点附近对方程(1.7)求
17、积分, 我们得到即由此得 (1.9)当取极限时, 我们得到一个边界条件 (1.10)其次, 根据波函数的连续性的普遍要求,我们有第二个边界条件: (1.11)因为在点并没有任何特殊之处, 所以条件(1.10)和(1.11)在任一点都能得到满足. 实际上上述边界条件在任何势能函数跃变的地方均可以满足.2 阶梯势垒散射2.1 模型与方程本章中,我们将讨论体系势能在无限远处为有限的情况,这时粒子可以在无限远处出现,波函数在无限远处不为零,由于没有无限远处波函数为零的约束,体系能量可以取任意值,即能级组成连续谱.这类问题属于粒子被势函数散射的问题,粒子从无限远处来,被势场散射后又到无限远处去.在这类问
18、题中,粒子的能量是预先给定的.考虑在一维空间中运动的粒子,它的势能在有限区域内等于常量,而在区域内等于零,即 (2.1)我们称这种势为阶梯势垒(图2.1). 具有一定能量的粒子由势垒左方向右方运动.图2.1 一维阶梯势垒在经典力学中,只有能量大于的粒子才能越过势垒运动到的区域;能量小于的粒子运动到势垒左方边缘(处)时被反射回去,不能透过势垒.在量子力学中,情况却不是这样.能量大于的粒子有可能越过势垒,但也有可能被反射回来;而能量小于的粒子有可能被势垒反射回来,但也有可能贯穿势垒而运动到势垒右边的区域中去.粒子的波函数所满足的定态薛定谔方程是 (2.2)和 (2.3)或改写成 (2.4)和 (2
19、.5)下面我们分两种情况分别进行讨论.2.2 的情况现在令 (2.6)则得 (2.7)和 (2.8)容易得出方程(2.7)和(2.8)的解为 (2.9) (2.10)由(1.5)式可知,当(2.9)和(2.10)式中的波函数、乘上时间因子后, 、中的第一项和第二项分别描述的是由左向右传播的平面波和由右向左传播的平面波. 由于在处的边界条件并不足以确定(2.9)和(2.10)中的4个未知常数, 为确定这些常数我们假设粒子自左向右运动.当为很大的正值时, 波函数应该描述越过“壁顶”并沿轴的正方向运动的一个粒子, 它的渐近形式必然是 (2.11)即取. 由处的边界条件:, (2.12) (2.13)
20、我们有 (2.14) (2.15)(2.14)和(2.15)两式给出透射波和反射波振幅与入射波振幅之间的关系如下: (2.16) (2.17)由这两式可以求出透射波和反射波的几率密度与入射波几率密度之比.将入射波、透射波和反射波依次代换下式中的,得入射波的几率流密度为透射波的几率流密度为反射波的几率流密度为透射波的几率流密度与入射波的几率流密度之比称为透射系数,以表示.这个比值也就是贯穿到区域的粒子在单位时间内流过垂直于方向的单位面积的数目,与入射粒子(在区域)单位时间内流过垂直于方向的单位面积的数目之比.由上面的结果,有 (2.18)反射波几率流密度与入射波几率流密度之比称为反射系数,以表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科 毕业设计 势阱 粒子 运动 能级 函数
限制150内