数学余弦定理说课稿.docx
《数学余弦定理说课稿.docx》由会员分享,可在线阅读,更多相关《数学余弦定理说课稿.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学余弦定理说课稿数学余弦定理说课稿1一、教材分析1.地位及作用余弦定理是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中勾股定理内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。2.教学重、难点重点:余弦定理的证明过程和定理的简单应用。难点:利用向量的数量积证余弦定理的思路。二、教学目标知识目标:能推导余弦定理及其推论,能运用余弦定理解已知边,角,边和边,边,边两类三角形。三。教学方法数学课堂上首先要重视知识的发生过程,既能展现
2、知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循提出问题、分析问题、解决问题的.步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。四、教学过程本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历现实问题转化为数学问题的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。帮助学生从平面
3、几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在中已知AC=b,AB=c和A,求a.学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在中已知a=5,b=7,c=8,求B.学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。让学生观察推论的特征
4、,讨论该推论有什么用。数学余弦定理说课稿2大家好,今天我向大家说课的题目是余弦定理。下面我将从以下几个方面介绍我这堂课的教学设计。一、教材分析本节知识是职业高中数学教材第五章第九节解三角形的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识根据上述教材内容分析,考虑
5、到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:理解掌握余弦定理,能正确使用定理培养学生教形结合分析问题的能力培养学生严谨的推理思维和良好的审美能力。教学重点:定理的探究及应用教学难点:定理的探究及理解二、学情分析对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。三、教法分析根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的
6、指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。四、学法指导:指导学生掌握“观察猜
7、想证明应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。五、教学过程第一:创设情景,大概用2分钟第二:实践探究,形成定理,大约用25分钟第三:应用定理,拓展反思,大约用13分钟(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理
8、不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。(二)逻辑推理,证明猜想提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。(三)归纳总结,简单应用1、让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。2、回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。(四)讲解例题,巩固定理1、审题确定条件。2、明确求解任务。3、确定使用公式。4、科学求解过程。(五)课堂练习,提高巩固1、在ABC中,已知下列条件,解三角形(1)A=45,C=30,c=10cm(2)A=
9、60,B=45,c=20cm2、在ABC中,已知下列条件,解三角形(1)a=20cm,b=11cm,B=30(2)c=54cm,b=39cm,C=115学生板演,老师巡视,及时发现问题,并解答。(六)小结反思,提高认识通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?1、用向量证明了余弦定理,体现了数形结合的数学思想。2、两种表达。3、两类问题。(七)思维拓展,自主探究利用余弦定理判断三角形形状,即余弦定理的推论。数学余弦定理说课稿3一、教材分析:(说教材)余弦定理是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理
10、,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。二、说教学思路本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培
11、养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。三、说教法在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。1、任务驱动法教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强
12、烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。2、引导发现法、观察法通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。3、归纳总结法学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。4、讲练结合法讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。四、说学法学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻
13、辑思维能力,训练思维品质。五、教学目标(一)知识目标1、使学生掌握余弦定理及其证明。2、使学生初步掌握应用余弦定理解斜三角形。(二)能力目标1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。(三)德育目标1、培养学生的爱国主义精神、及团结、协作精神。2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。六、教学重点教学重点是余弦定理及应用余弦定理解斜三角形;七、教学难点分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 余弦 定理 说课稿
限制150内