开关电源的电磁兼容性设计(完整版)实用资料.doc
《开关电源的电磁兼容性设计(完整版)实用资料.doc》由会员分享,可在线阅读,更多相关《开关电源的电磁兼容性设计(完整版)实用资料.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、开关电源的电磁兼容性设计(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)开关电源的电磁兼容性设计摘要:系统地分析了开关电源产生噪声的主要原因及产生噪声的回路和部件,给出了相应的抗干扰措施,从而提高了形状电源的电磁兼容性。开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威
2、胁。因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标有严格要求的场下被采用。1. 开关电源产生噪声的原因开关电源的种类很多,按变换器的电路结构可分为串行联式和直流变换式两种;按激励方式可分为自激和它激两种;按开关管的组合可分为桥式、半桥式、推换式等。但无论体积类型的开关电源都是利用半导体器件的开和关工作的,并以开和关的时间比来控制输出电压的高低。由于它通常在20kHz以上的开关频率下工作,所以电源线路内的dv/dt、di/dt很大,产生很大的浪涌电压、浪涌电流和其它各种噪声。它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。图1给出了一种典型的开关电源电路
3、的简图,下面以此为例分析其产生噪声的主要原因。1.1 一次整流回路的噪声在一次整流回路中,整流二极管D1D4只有在脉动电压超过C1的充电电压的瞬间,电流才从电源输入侧流入。所以,一次整流回路产生高次畸变波,形成噪声。1.2 开关回路的噪声一是电磁辐射。电源在工作时,开关管T处于高频率通断状态,在由脉冲变压器初级线圈L1、开关管T和滤波器C1构成的高频电流环路中,可能会产生较大的空间辐射噪声。如果C1的滤波不足,则高频电流还会以差模方式传导到交流电源中去。二是感性负载引起的浪涌电压。在开关回路中开关管T的负载是脉冲变压器的初级线圈L1,是感性负载,所以开关管高的浪涌电压,很可很造成与此同一回路的
4、电子器件(尤其是开关管T)的损坏。1.3 二次整流回路的噪声一是电磁辐射。电源在工作时,整流二极D5也处于高频通断状态,由脉冲变压器次级线圈L2、整流二极管D5和滤波电容C2构成了高频开关电流环路,电流将以差模形式混在输出直流电压上,影响负载电路的正常工作。二是浪涌电流。硅二极管在正向导通时PN结内的电荷被积累,二极管加反向电压时积累的电荷将消失并产生反向电流。由于二次整流回路中D5在开关转换时频率很高,即由导通转变为截止的时间很短。在短时间内要让存储电荷消失就产生反电流的浪涌。由于直流输出线路中的分布电容、分布电感的存在,使因浪涌引起的干扰成为高频衰减振荡。1.4 控制回路的噪声控制回路中的
5、脉冲控制信号是主要的噪声源。1.5 分布电容引起的噪声一是Ci的作用。散热片K与开关管T的集电极间虽然有绝缘垫片,但由于其接触面较大,绝缘垫较薄,因此两者之间的分布电容Ci在高频时不能忽略。因此高频电容会通过Ci流到散热片上,再流到机壳地,最终流到与机壳地相连的交流电源的保护地线PE中,以产生共模辐射。二是Cd的作用。脉冲变压器的初、次级之间存在的分布电容Cd,可能会将原边高频电压直接耦合到副边上去,在副边用作直流输出的两条电源线上产生同相位的共模噪声。2 开关电源的电磁兼容性设计抑制开关电源的噪声可采取三方面的技术。一是减小干扰源的干扰能量;二是破坏干扰路径;三是采用屏蔽。2.1 减小干扰源
6、能量由于开关电源的干扰源是不可能消除的,所以减小干扰源的能量不显得非常必要。一般采取的措施有:(1)并接RC电路。在开关管T两端加RC吸收电路,如图2(a)所示。在二次整流回路中的整流二极管D5两端加RC吸收电路,如图2(b)所示,抑制浪涌电压。(2)串接可饱和磁芯线圈。在二次整流回路中,与整流二极管D6串接带可饱和磁芯的线圈,如炉图2(b)所示。可饱和磁芯线圈在通过正常电流时磁芯饱和,电感量很小,不会影响电路正常工作;一旦电流要反向流过时,磁芯线圈将产生很大的反电势,阻止反向电流的上升,因此将它与二极管D6串联就能有效地抑制二极管D5的反向浪涌电流。目前已有超小型非晶型磁环成品,可以直接套在
7、二极管的正极引线上,使用方便。2.2 破坏干扰路径一是针对开磁电源中分布电容引起的电场噪声采取措施。主要抗干扰措施有:(1)减少开磁管集电极和散热片之间的耦合电容Ci。选用低介电常数的材料作绝缘垫,加厚垫片的厚度,并采用静电屏蔽的方法,如图3所示。一般开关管的外壳是集电极,在集电极和散热片之间垫上一层夹心绝缘物,即绝缘物中间夹一层铜箔,作为静电屏蔽层,接在输入直流0V地上,散热片仍接在机壳地上,这样钭大大减少集电极与散热片之间的耦合电容Ci,也就减少了它们之间的电场耦合。图3(a)是减少Ci的原理图,屏蔽层将Ci分成Ci1和Ci2的串联形式,图3(b)是实物图。(2)减少脉冲变压器的分布电容C
8、d。在一痤侧和二次侧间加静电屏蔽层,屏蔽层应尽量靠近发射极并接地,这样将耦合电容Cd也分成Cd1和Cd2的串联形式,如图4所示,减少了一、二次侧的电场的耦合干扰。二是针对开关电源通过电源线向外传输噪声的特点采取措施,即采用滤波技术破坏干扰。采用的滤波技术有:(1)交流侧流滤波。开关电源的交流电源线输入端插入共模和差模滤波器,防止开关电源的共模和差模噪声传递到电源线中,影响电网中其它用电设备,同时也抑制来自电网的噪声。交流侧滤波器如图5(a)所示,其中LD、CD用于抑制差模噪声,一般ID取100700H,CD取110F,对抑制10150kHz的噪声比较有效。Ic/Cc抑制共模噪声,一般Lc取13
9、mH,Cc取20006800pF,对抑制150kHz以上的共模噪声有效。对于具体的开关电路要对其上述元件的参数进行调试确定。(2)直流侧滤波。在开磁电源的直流输出侧插入如图5(b)所示的电源滤波器,它由共模扼流圈L1、L2,扼流圈L3和电容C1、C2组成。为了防止磁芯在较大的磁场强度下饱和而使扼流圈失去作用,扼流圈的磁芯必须采用高频特性好且饱和磁场强度大的恒磁芯。2.3 屏蔽抑制辐射噪声的有效方法是蔽。用导电良好的材料对电场屏蔽,用导磁率高的材料对磁场屏蔽。为了防止脉冲变压器的磁场泄露,可利用闭合磁环形成磁屏蔽,对整个开关电流要进行屏蔽。在屏蔽的应考虑散热和通风问题,屏蔽盒上的通风孔最好为圆形
10、,接缝处最好焊接,以保证电磁的连续性。开关电源的电磁兼容性设计考虑的因素还很多,如印制板的制作、元器件的布局以及各种电源线、信号线的捆扎、配置等,有许多工作要做。全面抑制开关电源的各种噪声会大大提高开关电源的电磁兼容性,使开关电源得到更广泛的应用。开关电源功率变压器的设计方法1开关电源功率变压器的特性 功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位
11、失真传输具有宽频带的脉冲能量。 图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。图中:Rsi信号源Ui的内阻Rp一次绕组的电阻Rm磁心损耗(对铁氧体磁心,
12、可以忽略)T理想变压器Rso二次绕组的电阻RL负载电阻C1、C2一次和二次绕组的等效分布电容Lin、Lis一次和二次绕组的漏感Lm1一次绕组电感,也叫励磁电感n理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路 将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL是RL等效到一次侧的阻值,RL=RL/n2,折合后的输出电压Uo=Uo/n。 经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起
13、主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。(1)上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,C的容抗1/C很小,而Lm1的感抗Lm1很大,相比起来,可将Lm1的作用忽略,而
14、在串联的支路中,Li的作用即较为显著。于是可以把图3所示的等效电路简化成图4所示的等效电路。 图3图2的等效电路 图4图3的简化电路在这个电路中,频率越高,Li越大,而1/C越小,因而高频信号大多降在Li上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数)。但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。在绕制上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、
15、二次绕组交叠绕法等。(2)平顶阶段脉冲的平顶包含着各种低频分量。在低频情况下,并联在输出端的3个元件中,电容C的容抗1/C很大,因此电容C可以忽略。同时在串联支路中,Li的感抗Li很小,也可以略去。所以又可以把图3电路简化为图5所示的低频等效电路。信号源也可以等效成电动势为Usm的直流电源。这里可用下述公式表达Uo=(UsmRL)eT/(RsRL)=Lm1(RsRL)RsRL可见Uo为一下降的指数波形,其下降速度决定于时间常数,越大,下降越慢,即波形失真越小。为此,应尽量加大Lm1,而减小Rs和RL,但这是有限的。如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变
16、坏。 图5图3的低频等效电路 图6脉冲下降阶段的等效电路(3)下降阶段 下降阶段的信号源相当于直流电源Usm串联的开关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。 一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。为了消除下冲往往采用阻尼措施。2功率变压器的参数及公式2.1变压器的基本参数在磁路中,磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T),通常仍用
17、高斯(GS)单位,1T=104GS。另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4NI/li式中:N绕组匝数I电流强度li磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。图7为一典型的磁化曲线。由坐标0点到a点这段曲线称起始磁化曲线。曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a),同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这种材料为硬磁性材料。当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表
18、明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b)。 图7不带气隙的磁滞回线 图8硬/软磁性材料和磁滞回线(a)硬磁材料(b)软磁材料 如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。因为空气隙的磁导率为1,所以有效磁路长度le为le=liilg式中:li磁性材料中的磁路长度lg空气隙的磁路长度i磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)Bm=(Up104)/KfNpSc式中:Up变压器一次绕组上所加电压
19、(V)f脉冲变压器工作频率(Hz)Np变压器一次绕组匝数(匝)Sc磁心有效截面积(cm2)K系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo105式中:j导线电流密度(A/mm2)Sc磁心的有效截面积(cm2)So磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断
20、条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。(2)避免瞬态饱和 一般工频电源变压器的工作磁通密度设计在BH曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。(3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度
21、的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40考虑,磁心温度可达6080,一般选择Bm=0.20.4T,即20004000GS。(4)合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。4磁心材料的选择软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。软磁铁氧体,常用的分为锰锌铁氧体
22、和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4KR10K,即相对磁导率为400010000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。开关电源用铁氧体磁性材应满足以下要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开关电源 电磁 兼容性 设计 完整版 实用 资料
限制150内