概率论与数理统计期末考试题及答案(完整版)资料.doc
《概率论与数理统计期末考试题及答案(完整版)资料.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计期末考试题及答案(完整版)资料.doc(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概率论与数理统计期末考试题及答案(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|) = 0.85, 则P(A|) = 。 P( AB) = 。2、设事件A与B独立,A与B都不发生的概率为,A发生且B不发生的概率与B发生且A不发生的概率相等,则A发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X的密度函数为:, 则常数A= , 分布函数F(x)= , 概率 ;5、设随机变
2、量X B(2,p)、Y B(1,p),若,则p = ,若X与Y独立,则Z=max(X,Y)的分布律: ;6、设且X与Y相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设是总体的简单随机样本,则当 时, ;8、设总体为未知参数,为其样本,为样本均值,则的矩估计量为: 。9、设样本来自正态总体,计算得样本观察值,求参数a的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X的密度函数为: 求:1);2)的密度函数;3);2、(12分)设随机变量(X,Y)的密度函数为1) 求边缘密度函数;2) 问X与Y是否独立?是否相关?3) 计算Z = X
3、 + Y的密度函数; 3、(11分)设总体X的概率密度函数为: X1,X2,Xn是取自总体X的简单随机样本。1) 求参数的极大似然估计量;2) 验证估计量是否是参数的无偏估计量。三、 应用题(20分)1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是1/4,1/3,1/2。现此人迟到,试推断他乘哪一种交通工具的可能性最大?2(10分)环境保护条例,在排放的工业废水中,某有害物质不得超过0.5,假定有害物质含量X服从正态分布。现在取5份水样,测定该有害物质含量,
4、得如下数据: 0.530,0.542,0.510,0.495,0.515能否据此抽样结果说明有害物质含量超过了规定()?附表:答 案(模拟试题一)四、 填空题(每空3分,共45分)1、0.8286 , 0.988 ;2、 2/3 ;3、,;4、 1/2, F(x)= , ;5、p = 1/3 , Z=max(X,Y)的分布律: Z 0 1 2P 8/27 16/27 3/27;6、D(2X-3Y)= 43.92 , COV(2X-3Y, X)= 3.96 ;7、当 时,;8、的矩估计量为:。9、 9.216,10.784 ; 五、 计算题(35分)1、解 1) 2) 3)2、解:1) 2)显然
5、,所以X与Y不独立。 又因为EY=0,EXY=0,所以,COV(X,Y)=0,因此X与Y不相关。 3)3、解1) 令 解出: 2) 的无偏估计量。 六、 应用题(20分)1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是1/4,1/3,1/2。现此人迟到,试推断他乘哪一种交通工具的可能性最大?解:设事件A1,A2,A3,A4分别表示交通工具“火车、轮船、汽车和飞机”,其概率分别等于3/10,1/5,1/10和2/5,事件B表示“迟到”,已知概率分别等于1/4,
6、1/3,1/2,0 则 ,由概率判断他乘火车的可能性最大。2(10分)环境保护条例,在排放的工业废水中,某有害物质不得超过0.5,假定有害物质含量X服从正态分布。现在取5份水样,测定该有害物质含量,得如下数据: 0.530,0.542,0.510,0.495,0.515能否据此抽样结果说明有害物质含量超过了规定()?解:(), 拒绝域为: 计算, 所以,拒绝,说明有害物质含量超过了规定。 附表:概率论与数理统计习题答案详解版(廖茂新复旦版)习 题 一1.设A,B,C为三个事件,用A,B,C的运算式表示下列事件:(1) A发生而B与C都不发生;(2) A,B,C至少有一个事件发生;(3) A,B
7、,C至少有两个事件发生;(4) A,B,C恰好有两个事件发生;(5) A,B至少有一个发生而C不发生;(6) A,B,C都不发生.解:(1)A或A-B-C或A-(BC).(2)ABC.(3)(AB)(AC)(BC).(4)(AB)(AC)(BC).(5)(AB).(6)或.2.对于任意事件A,B,C,证明下列关系式:(1)(A+B) (A+)(+ B)(+)= ;(2)AB+B +A+= AB;(3)A-(B+C)= (A-B)-C.证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1) A发生但B不发生的概率;(2) A,B都不发生的概率;(3)
8、至少有一个事件不发生的概率.解(1) P(A)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4; (2) P()=P()=1-P(AB)=1-0.7=0.3;(3) P()=P()=1-P(AB)=1-0.1=0.9.4.调查某单位得知。购买空调的占15,购买电脑占12,购买DVD的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5,三种电器都购买占2。求下列事件的概率。(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1) 0.28, (2)0.83, (3) 0.725.10把钥匙中有3把能打开门,今任意取两把,
9、求能打开门的概率。解:8/156.任意将10本书放在书架上。其中有两套书,一套3本,另一套4本。求下列事件的概率。(1)3本一套放在一起; (2)两套各自放在一起;(3)两套中至少有一套放在一起.解: (1)1/15, (2)1/210, (3)2/217. 12名新生中有3名优秀生,将他们随机地平均分配到三个班中去,试求:(1) 每班各分配到一名优秀生的概率;(2) 3名优秀生分配到同一个班的概率.解 12名新生平均分配到三个班的可能分法总数为(1) 设A表示“每班各分配到一名优秀生”3名优秀生每一个班分配一名共有3!种分法,而其他9名学生平均分配到3个班共有种分法,由乘法原理,A包含基本事
10、件数为3!=故有P(A)=/=16/55(2) 设B表示“3名优秀生分到同一班”,故3名优秀生分到同一班共有3种分法,其他9名学生分法总数为,故由乘法原理,B包含样本总数为3.故有 P(B)=/=3/558.箱中装有a只白球,b只黑球,现作不放回抽取,每次一只.(1) 任取m+n只,恰有m只白球,n只黑球的概率(ma,nb);(2) 第k次才取到白球的概率(kb+1);(3) 第k次恰取到白球的概率.解 (1)可看作一次取出m+n只球,与次序无关,是组合问题.从a+b只球中任取m+n只,所有可能的取法共有种,每一种取法为一基本事件且由于对称性知每个基本事件发生的可能性相同.从a只白球中取m只,
11、共有种不同的取法,从b只黑球中取n只,共有种不同的取法.由乘法原理知,取到m只白球,n只黑球的取法共有种,于是所求概率为p1=.(2) 抽取与次序有关.每次取一只,取后不放回,一共取k次,每种取法即是从a+b个不同元素中任取k个不同元素的一个排列,每种取法是一个基本事件,共有个基本事件,且由于对称性知每个基本事件发生的可能性相同.前k-1次都取到黑球,从b只黑球中任取k-1只的排法种数,有种,第k次抽取的白球可为a只白球中任一只,有种不同的取法.由乘法原理,前k-1次都取到黑球,第k次取到白球的取法共有种,于是所求概率为p2=.(3) 基本事件总数仍为.第k次必取到白球,可为a只白球中任一只,
12、有种不同的取法,其余被取的k-1只球可以是其余a+b-1只球中的任意k-1只,共有种不同的取法,由乘法原理,第k次恰取到白球的取法有种,故所求概率为p3=.9.在区间(0,1)内任取两个数,求这两个数的乘积小于1/4的概率.解 设在(0,1)内任取两个数为x,y,则0x1,0y1图1-7即样本空间是由点(x,y)构成的边长为1的正方形,其面积为1.令A表示“两个数乘积小于1/4”,则A=(x,y)0xy1/4,0x1,0y1事件A所围成的区域见图1-7,则所求概率P(A) =.10.两人相约在某天下午500600在预定地方见面,先到者要等候20分钟,过时则离去.如果每人在这指定的一小时内任一时
13、刻到达是等可能的,求约会的两人能会到面的概率.解 设x,y为两人到达预定地点的时刻,那么,两人到达时间的一切可能结果落在边长为60的正方形内,这个正方形就是样本空间,而两人能会面的充要条件是x-y20,即x-y20且y-x20.令事件A表示“两人能会到面”,这区域如图1-8中的A.则P(A) =11.一盒中装有5只产品,其中有3只正品,2只次品,从中取产品两次,每次取一只,作不放回抽样,求在第一次取到正品条件下,第二次取到的也是正品的概率.解 设A表示“第一次取到正品”的事件,B表示“第二次取到正品”的事件由条件得P(A)=(34)/(54)= 3/5,P(AB)= (32)/(54)= 3/
14、10,故有 P(BA)=P(AB)/P(A)=(3/10)/( 3/5)= 1/2.此题也可按产品编号来做,设1,2,3号为正品,4,5号为次品,则样本空间为=1,2,3,4,5,若A已发生,即在1,2,3中抽走一个,于是第二次抽取所有可能结果的集合中共有4只产品,其中有2只正品,故得P(BA)=2/4=1/2.12.设P()=0.3,P(B)=0.4,P(A)=0.5,求P(BA).解 13.设盒中有m只红球,n只白球,每次从盒中任取一只球,看后放回,再放入k只与所取颜色相同的球.若在盒中连取四次,试求第一次,第二次取到红球,第三次,第四次取到白球的概率.解 设Ri(i=1,2,3,4)表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 期末 考试题 答案 完整版 资料
限制150内