一元二次方程数学教学教案41055.docx
《一元二次方程数学教学教案41055.docx》由会员分享,可在线阅读,更多相关《一元二次方程数学教学教案41055.docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程数学教学教案一元二次方程是只含有一个未知数,且未知数的最高次数是二次的多项式方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a0),其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;下面是为大家整理的一元二次方程数学教学教案5篇,希望大家能有所收获!一元二次方程数学教学教案1一、教材分析1、教材的地位和作用一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上
2、述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。2、教学目标及确立目标的依据九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。德育目标:培养学生把感性认识上升到
3、理性认识的辩证唯物主义的观点。3、重点,难点及确定重难点的依据“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。二、教材处理在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。三、教学方法和学法教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解
4、决。四、教学手段采用投影仪五、教学程序1、新课导入:(1)什么叫一元一次方程(并引入一元二次方程的概念做铺垫)(2)列方程解应用题的方法,步骤(并引例打基础)课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)设出求知数,列出代数式,并根据等量关系列出方程一元二次方程数学教学教案2教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程
5、的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次
6、函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作2.8.1A)第二张:(记作2.8.1B)教学过程.创设问题情境,引入新课师我们学习了一元一次方程kx+b=0(k0)和一次函数y=kx+b(k0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a
7、0)和二次函数y=ax2+bx+c(a0),它们之间是否也存在一定的关系呢本节课我们将探索有关问题.一元二次方程数学教学教案3教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标2了解一元二次方程的概念;一般式ax+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设臵问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决
8、问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。如果假设门的高为x尺,那么,这个门的宽为_尺,长为_尺,根据题意,得_.整理、化简,得:_.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数(2)按照整式中的多项式的规定,它们次数是几次(3)有等号吗还是与多项式一样只有式子老师点评
9、:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.2一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.2一个一元二次方程经过整理化成ax+bx+c=0(a0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2分析:一元二次方程的一般形式
10、是ax+bx+c=0(a0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.22分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a0)的形式.解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程(1)3x+2=5y-3(2)x=4(3)3x-2
11、2225222=0(4)x-4=(x+2)(5)ax+bx+c=0x四、应用拓展22例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.2分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+170即可.22证明:m-8m+17=(m-4)+12(m-4)022(m-4)+10,即(m-4)+10不论m取何值,该方程都是一元二次方程.2练习:1.方程(2a4)x2bx+a=0,在什么条件下此方程为一元二次方程在什么条件下此方程为一元一次方程/4m/-42.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小
12、结(学生总结,老师点评)本节课要掌握:2(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布臵作业第2课时21.1一元二次方程教学内容1.一元二次方程根的概念;2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难
13、点关键1.重点:判定一个数是否是方程的根;2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.2问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0列表:问题2列表:3老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少问题2中一元二次方程的解是多少(2)如果抛开实际问题,问题2中还有其它解吗22老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫
14、做一元二次方程的根.2回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.2例1.下面哪些数是方程2x+10x+12=0的根-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.2解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.2例2.若x=1是关于x的一元二次方程ax+bx+c=0(a0)的一个根
15、,求代数式2007(a+b+c)的值22练习:关于x的一元二次方程(a-1)x+x+a-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗222(1)x-64=0(2)3x-6=0(3)x-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材思考题练习1、2.四、归纳小结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求
16、一元二次方程的根.(“夹逼”方法;平方根的意义)六、布臵作业1.教材复习巩固3、4综合运用5、6、7拓广探索8、9.2.选用课时作业设计.第3课时21.2.1配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.2提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解2a(ex+f)+c=0型的一元二次方程.重难点关键21.重点:运用开平方法解形如(x+m)=n(n0)的方程;领会降次转化的数学思想.222.难点与关键:通过根据平
17、方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x+m)=n(n0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空222222(1)x-8x+_=(x-_);(2)9x+12x+_=(3x+_);(3)x+px+_=(x+_).问题1:根据完全平方公式可得:(1)164;(2)42;(3)(p2p).22问题2:目前我们都学过哪些方程二元怎样转化成一元一元二次方程于一元一次方程有什么不同二次如何转化成一次怎样降次以前学过哪些降次的方法二、探索新知4上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=3,如果x换元为2t+1,即(2t+1)=9,能否也用直
18、接开平方的方法求解呢(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2222例1:解方程:(1)(2x-1)=5(2)x+6x+9=2(3)x-2x+4=-122分析:很清楚,x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1.2解:(2)由已知,得:(x+3)=2直接开平方,得:x+3=即所以,方程的两根x1x22例2.市政府计划2年内将人均住房面积由现在的10m提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(
19、1+x);二年后人均2住房面积就应该是10(1+x)+10(1+x)x=10(1+x)解:设每年人均住房面积增长率为x,2则:10(1+x)=14.42(1+x)=1.44直接开平方,得1+x=1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 数学 教学 教案 41055
限制150内