《优秀华师大版八年级数学下册教案全集5篇.docx》由会员分享,可在线阅读,更多相关《优秀华师大版八年级数学下册教案全集5篇.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀华师大版八班级数学下册教案全集(精选5篇) 优秀华师大版八班级数学下册教案全集(精选5篇) 新的数学方法和概念,常常比解决数学问题本身更重要。上帝是一位算数家。数学是一种别具匠心的艺术。这里给大家共享一些关于优秀华师大版八班级数学下册教案全集,供大家参考学习。 优秀华师大版八班级数学下册教案全集(篇1) 教学目标: 1、知道负整数指数幂=(a0,n是正整数)、 2、把握整数指数幂的运算性质、 3、会用科学计数法表示小于1的数、 教学重点: 把握整数指数幂的运算性质。 难点: 会用科学计数法表示小于1的数。 情感态度与价值观: 通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实
2、践,服务于实践。能利用事物之间的类比性解决问题、 教学过程: 一、课堂引入 1、回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:am?an = am+n(m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:aman = am?n(a0,m,n是正整数,mn); (5)商的乘方:()n = (n是正整数); 2、回忆0指数幂的规定,即当a0时,a0 = 1、 3、你还记得1纳米=10?9米,即1纳米=米吗? 4、计算当a0时,a3a5 =,另一方面,假如把正整数指数幂的运算性质
3、aman = am?n (a0,m,n是正整数,mn)中的mn这个条件去掉,那么a3a5 = a3?5 = a?2,于是得到a?2 =(a0)。 二、总结:一般地,数学中规定:当n是正整数时,=(a0)(留意:适用于m、n可以是全体整数)老师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、 三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012 = 1。21
4、0?即小于1的正数可以用科学记数法表示为a10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012 = 1。210?2,0。0012 = 1。210?3,0。00012 = 1。210?4,以此发现其中的规律,从而有0。0000000012 = 1。210?9,即对于一个小于1的正数,假如小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,假如有m个0,则10的指数应该是?m?1。 优秀华师大版八班级数学下册教案全集(篇2) 一、学习目标及重、难点: 1、了解方差的定义和计算公式。 2、理解方差概念的产生和形成的过程。 3、
5、会用方差计算公式来比较两组数据的波动大小。 重点:方差产生的必要性和应用方差公式解决实际问题。 难点:理解方差公式 二、自主学习: (一)知识我先懂: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 给力小贴士:方差越小说明这组数据越 。波动性越 。 (二)自主检测小练习: 1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。 2、甲、乙两组数据如下: 甲组:10 9 11 8 12 13 10 7 乙组:7 8 9 10 11 12 11 12。 分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。 三、
6、新课讲解: 引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、 10、13、7、13、10、8、11、8 乙:8、13、12、11、10、12、7、7、10、10 问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = ) (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 ) 归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 (一)例题讲解: 例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成果如下表所示,谁的成果比较稳定?为什么
7、?、 测试次数第1次 第2次 第3次 第4次 第5次 段巍 13 14 13 12 13 金志强 10 13 16 14 12 给力提示:先求平均数,在利用公式求解方差。 (二)小试身手 1、甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定 去参加竞赛。 1、求下列数据的众数: (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2 2、8班级一班46个同学中,13岁的有5人
8、,14岁的有20人,15岁的15人,16岁的6人。8班级一班学生年龄的平均数,中位数,众数分别是多少? 四、课堂小结 方差公式: 给力提示:方差越小说明这组数据越 。波动性越 。 每课一首诗:求方差,有公式先平均,再求差 求平方,再平均所得数,是方差。 五、课堂检测: 1、小爽和小兵在10次百米跑步练习中成果如表所示:(单位:秒) 小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9 小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8 假如根据这几次成果选拔一人参加竞赛,你会选谁呢? 六、
9、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题 七、学习小札记: 写下你的收获,沟通你的阅历,共享你的成果,你会感到无比的快乐! 优秀华师大版八班级数学下册教案全集(篇3) 一、教材分析 1、特点与地位:重点中的重点。 本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的有用意义。 2、重点与难点:结合学生现有抽象思维能力水平,已把握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。 (2)难点:求解最短路径算法的程序实现。 3、
10、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。 二、教学目标分析 1、知识目标:把握最短路径概念、能够求解最短路径。 2、能力目标: (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象能力。 (2)通过旅游景点线路选择问题的解决,培育学生的独立思考、分析问题、解决问题的能力。 3、素养目标:培育学生讲究工作方法、与他人合作,提高
11、效率。 三、教法分析 课前充分打算,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,留意与学生沟通,根据学生的反应掌握好教学进度是本节课成功的关键。 四、学法指导 1、课前上次课结课时给学生布置任务,使其有针对性的预习。 2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。 3、课后给学生布置同类型任务,加强练习。 五、教学过程分析 (一)课前复习(35分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。 教学方法及留意事项: (1)
12、采纳提问方式,留意准时小结,提问的目的是帮助学生回忆概念。 (2)提示学生“温故而知新”,养成良好的学习习惯。 (二)导入新课(35分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及留意事项: (1)先讲实例,再指出概念,既可以吸引学生留意力,激发学习爱好,又可以实现教学内容的自然过渡。 (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。 (三)讲授新课(2530分钟) 1、求某一结点到其他各结点的最短路径(重点)主要采纳案例教学法,提出旅游景点选择的例子,解决如何选择代价小
13、、景点多的路线。 (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(35分钟)教学方法及留意事项: 主要采纳讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。 留意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。 准时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。 利用多媒体课件,向学生展现一张带权有向图,并略作解释,为后续教学做打算
14、。 教学方法及留意事项: 启发式教学,如何实现按路径长度递增产生最短路径? 结合案例分析求解最短路径过程中(重点)留意此处借助黑板,根据算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。 (四)课堂小结(35分钟) 1、明确本节课重点 2、提示学生,这种方式形成的图又可以解决哪类实际问题呢? (五)布置作业 1、书面作业:复习本次课内容,打算一道备用习题,灵活把握时间安排。 六、教学特色 以旅游路线选择为主线,灵活采纳案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的有用性,提高学生的学习爱好。 优秀华师大版八班级
15、数学下册教案全集(篇4) 一、学习目标 1、多项式除以单项式的运算法则及其应用。 2、多项式除以单项式的运算算理。 二、重点难点 重点:多项式除以单项式的运算法则及其应用。 难点:探究多项式与单项式相除的运算法则的过程。 三、合作学习 (一)回顾单项式除以单项式法则 (二)学生动手,探究新课 1、计算下列各式: (1)(am+bm)m; (2)(a2+ab)a; (3)(4x2y+2xy2)2xy。 2、提问: 说说你是怎样计算的; 还有什么发现吗? (三)总结法则 1、多项式除以单项式:先把这个多项式的每一项除以_X,再把所得的商_ 2、本质:把多项式除以单项式转化成_ 四、精讲精练 例:(
16、1)(12a36a2+3a)3a; (2)(21x4y335x3y2+7x2y2)(7x2y); (3)(x+y)2y(2x+y)8x2x; (4)(6a3b3+8a2b4+10a2b3+2ab2)(2ab2)。 随堂练习:教科书练习。 五、小结 1、单项式的除法法则 2、应用单项式除法法则应留意: A、系数先相除,把所得的结果作为商的系数,运算过程中留意单项式的系数饱含它前面的符号; B、把同底数幂相除,所得结果作为商的因式,由于目前只讨论整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要留意运算挨次,有乘
17、方要先做乘方,有括号先算括号里的,同级运算从左到右的挨次进行; E、多项式除以单项式法则。 优秀华师大版八班级数学下册教案全集(篇5) 第三十四学时:14、2、1平方差公式 一、学习目标: 1、经历探究平方差公式的过程。 2、会推导平方差公式,并能运用公式进行简洁的运算。 二、重点难点 重点:平方差公式的推导和应用; 难点:理解平方差公式的结构特征,灵活应用平方差公式。 三、合作学习 你能用简便方法计算下列各题吗? (1)20_1999(2)9981002 导入新课:计算下列多项式的积、 (1)(x+1)(x1); (2)(m+2)(m2) (3)(2x+1)(2x1); (4)(x+5y)(x5y)。 结论:两个数的和与这两个数的差的积,等于这两个数的平方差。 即:(a+b)(ab)=a2b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x2); (2)(b+2a)(2ab); (3)(x+2y)(x2y)。 例2:计算: (1)10298; (2)(y+2)(y2)(y1)(y+5)。 随堂练习 计算: (1)(a+b)(b+a); (2)(ab)(ab); (3)(3a+2b)(3a2b); (4)(a5b2)(a5+b2); (5)(a+2b+2c)(a+2b2c); (6)(ab)(a+b)(a2+b2)。 五、小结 (a+b)(ab)=a2b2
限制150内