高二数学合情推理与演绎证明.ppt
《高二数学合情推理与演绎证明.ppt》由会员分享,可在线阅读,更多相关《高二数学合情推理与演绎证明.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课标人教版课件系列高中数学选修1-22.1合情推理与演绎证明-合情推理教学目标 1.了解演绎推理 的含义。2.能正确地运用演绎推理 进行简单的推理。3.了解合情推理与演绎推理之间的联系与差别。教学重点:正确地运用演绎推理 进行简单的推理 教学难点:了解合情推理与演绎推理之间的联系与差别。歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”即:偶数奇质数奇质数哥德巴赫猜想(Goldbach Conjecture)世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6
2、的偶数都是两个素数(只能被和它本身整除的数)之和。如633,1257等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个=6之偶数,都可以表示成两个奇质数之和。(b)任何一个=9之奇数,都可以表示成三个奇质数之和。这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+
3、5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,.等等。有人对33108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。哥德巴赫猜想(Goldbach Conjecture)目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chens Theorem)?“任何充份大的偶数都是一个质数与一个自然数之和,而後
4、者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为“1+2”的形式。哥德巴赫猜想(Goldbach Conjecture)在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了“9+9”。1924年,德国的拉特马赫(Rademacher)证明了“7+7”。1932年,英国的埃斯特曼(Estermann)证明了“6+6”。1937年,意大利的蕾西(Ricei)先後证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5”。1940
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 合情 推理 演绎 证明
限制150内