2023年线性代数第三章向量复习题超详细解析超详细解析答案.pdf





《2023年线性代数第三章向量复习题超详细解析超详细解析答案.pdf》由会员分享,可在线阅读,更多相关《2023年线性代数第三章向量复习题超详细解析超详细解析答案.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数第三章向量复习题答案 第 1 页(共 6 页)第三章 向量复习题 一、填空题:1、当t_3t 时,向量123(1,2,2),(4,3),(3,1,1)TTTt线性无关、3、如 果n,21线 性 无 关,且1n不 能 由n,21线 性 表 示,则121,n 的线性 无关 4、设T)5,2(1,Ta)1(2,,当a 时,21,线性相关、5、一个非零向量就是线性 无关;的,一个零向量就是线性 相关的、6、设向量组 A:321,线性无关,31,12,32线性 相关 7、设A为n阶方阵,且1)(nAr,21,就是 AX=0 的两个不同解,则21,一定线性 相关 8、向量组1,lL能由向量组1,m
2、L线性表示的充分必要条件就是12(,)mR L 等于 1212(,)mlR LL,。(填大于,小于或等于)9、设 向量 组 11,1,1,21,2,3,31,3,t线性相 关,则t的 值为 5t。二、选择题:1、n阶方阵A的行列式0A,则A的列向量(A ).线性相关.线性无关.0)(AR.0)(AR 2、设A为n阶方阵,nrAR)(,则A的行向量中(A)A、必有r个行向量线性无关 B、任意r个行向量构成极大线性无关组 C、任意r个行向量线性相关 D、任一行都可由其余r个行向量线性表示 3、设有n维向量组():12,r L与():12,()mmr L,则(B).A、向量组()线性无关时,向量组(
3、)线性无关 线性代数第三章向量复习题答案 第 2 页(共 6 页)B、向量组()线性相关时,向量组()线性相关 C、向量组()线性相关时,向量组()线性相关 D、向量组()线性无关时,向量组()线性相关 4、下列命题中正确的就是(C )(A)任意n个1n维向量线性相关 (B)任意n个1n维向量线性无关(C)任意1n个n 维向量线性相关 (D)任意1n个n维向量线性无关 5、向量组r,21线性相关且秩为 s,则(D )(A)sr (B)sr (C)rs (D)rs 6、n维向量组 s,21(3 s n)线性无关的充要条件就是(B )、(A)s,21中任意两个向量都线性无关(B)s,21中任一个向
4、量都不能用其余向量线性表示(C)s,21中存在一个向量不能用其余向量线性表示(D)s,21中不含零向量 7、向量组n,21线性无关的充要条件就是(D )A、任意i不为零向量 B、n,21中任两个向量的对应分量不成比例 C、n,21中有部分向量线性无关 D、n,21中任一向量均不能由其余 n-1个向量线性表示 8、设A为n阶方阵,nrAR)(,则A的行向量中(A )A、必有r个行向量线性无关 B、任意r个行向量构成极大线性无关组 C、任意r个行向量线性相关 D、任一行都可由其余r个行向量线性表示 9、设A为n阶方阵,且秩12()1.,An 就是非齐次方程组AXB的两个不同的解向量,则AX0的通解
5、为(C )性相关设为阶方阵且就是的两个不同解则一定线性相关向量组能由向量组线性表示的充分必要条件就是等于填大于小量中必有个行向量线性无关任意个行向量构成极大线性无关组任意个行向量线性相关任一行都可由其余个行向量线性关时向量组线性相关向量组线性相关时向量组线性相关向量组线性无关时向量组线性相关下列命题中正确的就是任意线性代数第三章向量复习题答案 第 3 页(共 6 页)A、1k B、2k C、)(21k D、)(21k 10、已知向量组1231,1,1,1,2,0,0,0,2,5,2t的秩为 2,则t(A)、A、3 B、-3 C、2 D、-2 11、设A为n阶方阵,nrAR)(,则A的行向量中(
6、A)A、必有r个行向量线性无关 B、任意r个行向量构成极大线性无关组 C、任意r个行向量线性相关 D、任一行都可由其余r个行向量线性表示 12、设向量组 A:321,线性无关,则下列向量组线性无关的就是(C )A、321,321232,321323 B、21,32,13 C、212,3232,133 D、12-,32,3212 14、已知向量组 A 线性相关,则在这个向量组中(C )(A)必有一个零向量、(B)必有两个向量成比例、(C)必有一个向量就是其余向量的线性组合、(D)任一个向量就是其余向量的线性组合、15、设A为n阶方阵,且秩()1R An,12,a a就是非齐次方程组Axb的两个不
7、同的解向量,则0Ax 的通解为 ()(A)12()k aa (B)12()k aa (C)1ka (D)2ka 16、已知向量组1,mK 线性相关,则(C )(A)该向量组的任何部分组必线性相关、(B)该向量组的任何部分组必线性无关 、(C)该向量组的秩小于m、(D)该向量组的最大线性无关组就是唯一的、17.已知123234(,)2,(,)3,RR 则 (C )性相关设为阶方阵且就是的两个不同解则一定线性相关向量组能由向量组线性表示的充分必要条件就是等于填大于小量中必有个行向量线性无关任意个行向量构成极大线性无关组任意个行向量线性相关任一行都可由其余个行向量线性关时向量组线性相关向量组线性相关
8、时向量组线性相关向量组线性无关时向量组线性相关下列命题中正确的就是任意线性代数第三章向量复习题答案 第 4 页(共 6 页)(A)123,线性无关 (B)234,线性相关(C)1能由23,线性表示 (D)4能由123,线性表示 18、若有 1133016,02135kkk 则 k 等于(A)1 (B)2 (C)3 (D)4 第三题 计算题:1、已知向量组0221,8451,6352,2130,421154321(1)求向量组54321,的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。解:0000010000021100120144220021101633011
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 线性代数 第三 向量 复习题 详细 解析 答案

限制150内