2016年山西省中考数学真题(含答案).docx
《2016年山西省中考数学真题(含答案).docx》由会员分享,可在线阅读,更多相关《2016年山西省中考数学真题(含答案).docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2016年山西省中考数学真题及答案一、选择题(本大题共10小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1(2016山西)的相反数是( A )A B-6 C6 D考点:相反数解析:利用相反数和为0计算解答:因为a+(-a)=0 的相反数是2(2016山西)不等式组的解集是( C )Ax5 Bx3 C-5x3 Dx-5 由得x3 所以不等式组的解集是-5x (填“”或“=”或“”)考点:反比函数的增减性分析:由反比函数m0,则图象在第二四象限分别都是y随着x的增大而增大 m
2、0,m-10,m-3m-3,从而比较y的大小解答:在反比函数中,m0,m-10,m-3m-3,所以 13(2016山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有(4n+1)个涂有阴影的小正方形(用含有n的代数式表示)考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n-1)=4n+1个解答:(4n+1)14(2016山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动让转盘自动转动两次,当指针指向的数都是奇数的概率为 考点:树状
3、图或列表求概率分析:列表如图:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)解答:由表可知指针指向的数都是奇数的概率为 15(2016山西)如图,已知点C为线段AB的中点,CDAB且CD=AB=4,连接AD,BEAB,AE是的平分线,与DC相交于点F,EHDC于点G,交AD于点H,则HG的长为 考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA, 由平行得出,由角平分得出 从而得出,所以HE=HA 再利用DGHDCA即可求出HE, 从而求出HG解答:如图(1)由勾股定理可得 DA= 由 AE是的平分线可知 由CDAB
4、,BEAB,EHDC可知四边形GEBC为矩 形,HEAB, 故EH=HA 设EH=HA=x 则GH=x-2,DH= HEAC DGHDCA 即 解得x= 故HG=EH-EG=-2= 三、解答题(本大题共8个小题,共75分解答应写出文字说明、证明过程或演算步骤)16(2016山西)(本题共2个小题,每小题5分,共10分)(1)计算:考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果解答:原=9-5-4+1 (4分) =1 (5分)(2)先化简,在求值:,其中x=-2考点:分式的化简求值分析:先把分子分母因
5、式分解,化简后进行减法运算解答:原式= (2分) = (3分) = (4分) 当x=-2时,原式= (5分)17(2016山西)(本题7分)解方程: 考点:解一元二次方程 分析:方法一:观察方程,可先分解因式,然后提取x-3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一: 原方程可化为 (1分) (2分) (3分) (4分) x-3=0或x-9=0 (5分) , (7分) 解法二: 原方程可化为 (3分) 这里a=1,b=-12,c=27 (5分) 因此原方程的根为 , (7分) 18(2016山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以
6、“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整)(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别
7、计算即可 (2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30% (3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示 (2)180030%=540(人) 估计该校对“工业设计”最感兴趣的学生是540人 (3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修” 最感兴趣的学生的概率是 0.13(或13%或) 19(2016山西)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理 阿基米德(Archimedes,公元前287公元212年,古希腊)是有史以来最伟大的数学家之一他与牛顿、高斯并称为三大数学王子阿拉伯
8、Al-Biruni(973年1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版阿基米德全集,第一题就是阿基米德的折弦定理 阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),BCAB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD下面是运用“截长法”证明CD=AB+BD的部分证明过程证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG M是的中点, MA=MC 任务:(1)请按照上面的证明思路,写出该证明的剩余部分; (2)填空:如图(3),已知等边ABC内接于,AB=2
9、,D为上一点, ,AEBD与点E,则BDC的长是 考点:圆的证明 分析:(1)已截取CG=AB 只需证明BD=DG 且MDBC,所以需证明MB=MG 故证明MBAMGC即可 (2)AB=2,利用三角函数可得BE= 由阿基米德折弦定理可得BE=DE+DC 则BDC周长=BC+CD+BD=BC+DC+DE+BE =BC+(DC+DE)+BE =BC+BE+BE =BC+2BE 然后代入计算可得答案 解答:(1)证明:又, (1分) MBAMGC (2分) MB=MG (3分) 又MDBC,BD=GD (4分) CD=CG+GD=AB+BD (5分) (2)填空:如图(3),已知等边ABC内接于,A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 山西省 中考 数学 答案
限制150内