2017年江西宜春中考数学真题(含答案).docx
《2017年江西宜春中考数学真题(含答案).docx》由会员分享,可在线阅读,更多相关《2017年江西宜春中考数学真题(含答案).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2017年江西宜春中考数学真题及答案一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1(3分)6的相反数是()ABC6D6【分析】求一个数的相反数,即在这个数的前面加负号【解答】解:6的相反数是6,故选C【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等2(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A0.13105B1.31
2、04C1.3105D13103【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【解答】解:将13000用科学记数法表示为:1.3104故选B【点评】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(3分)下列图形中,是轴对称图形的是()ABCD【分析】根据轴对称图形的概念求解【解答】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故
3、B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C【点评】本题考查了轴对称图形,掌握好轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4(3分)下列运算正确的是()A(a5)2=a10B2a3a2=6a2C2a+a=3aD6a62a2=3a3【分析】根据整式的运算法则即可求出答案【解答】解:(B)原式=6a3,故B错误;(C)原式=a,故C错误;(D)原式=3a4,故D错误;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型5(3分)已知一元二次方程2x25x+1=0的两个根为x1,x2,下列结
4、论正确的是()Ax1+x2=Bx1x2=1Cx1,x2都是有理数Dx1,x2都是正数【分析】先利用根与系数的关系得到x1+x2=0,x1x2=0,然后利用有理数的性质可判定两根的符号【解答】解:根据题意得x1+x2=0,x1x2=0,所以x10,x20故选D【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=,x1x2=6(3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A当E,F,G,H是各边中点,且
5、AC=BD时,四边形EFGH为菱形B当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形C当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可【解答】解:A当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B当E,F,G,H是四边形ABCD各边中点,且ACBD时,存在EFG=FGH=GHE=90,故四边形EFGH为矩形,故B正确;C如图所示,当E,F,G,H不是
6、四边形ABCD各边中点时,若EFHG,EF=HG,则四边形EFGH为平行四边形,故C正确;D如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH为菱形,故D错误;故选:D【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7(3分)函数y=中,自变量x的取值范围是x2【分析】根据二次根式的性质,被开方数大于等于0,就可以求解【解答】解:依题意,得x20,解得:x2,故答案为:x2【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次
7、根式的被开方数是非负数8(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB若剪刀张开的角为30,则A=75度【分析】根据等腰三角形的性质和三角形的内角和即可得到结论【解答】解:OA=OB,AOB=30,A=(18030)=75,故答案为:75【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键9(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为3【分析】根据有理数的加法,可得答案【解答】解:图中表示(+2)+(5
8、)=3,故答案为:3【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键10(3分)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是8【分析】根据从上边看得到的图形是俯视图,可得答案【解答】解:从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键11(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是5【分析】根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数【解答
9、】解:一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,(2+5+x+y+2x+11)=(x+y)=7,解得y=9,x=5,这组数据的众数是5故答案为5【点评】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错一组数据中出现次数最多的数据叫做众数12(3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA
10、沿OD折叠,点A的对应点为A若点A到矩形较长两对边的距离之比为1:3,则点A的坐标为(,3)或(,1)或(2,2)【分析】由已知得出A=90,BC=OA=4,OB=AC=7,分两种情况:(1)当点A在矩形AOBC的内部时,过A作OB的垂线交OB于F,交AC于E,当AE:AF=1:3时,求出AE=1,AF=3,由折叠的性质得:OA=OA=4,OAD=A=90,在RtOAF中,由勾股定理求出OF=,即可得出答案;当AE:AF=3:1时,同理得:A(,1);(2)当点A在矩形AOBC的外部时,此时点A在第四象限,过A作OB的垂线交OB于F,交AC于E,由AF:AE=1:3,则AF:EF=1:2,求出
11、AF=EF=BC=2,在RtOAF中,由勾股定理求出OF=2,即可得出答案【解答】解:点A(0,4),B(7,0),C(7,4),BC=OA=4,OB=AC=7,分两种情况:(1)当点A在矩形AOBC的内部时,过A作OB的垂线交OB于F,交AC于E,如图1所示:当AE:AF=1:3时,AE+AF=BC=4,AE=1,AF=3,由折叠的性质得:OA=OA=4,在RtOAF中,由勾股定理得:OF=,A(,3);当AE:AF=3:1时,同理得:A(,1);(2)当点A在矩形AOBC的外部时,此时点A在第四象限,过A作OB的垂线交OB于F,交AC于E,如图2所示:AF:AE=1:3,则AF:EF=1:
12、2,AF=EF=BC=2,由折叠的性质得:OA=OA=4,在RtOAF中,由勾股定理得:OF=2,A(2,2);故答案为:(,3)或(,1)或(2,2)【点评】本题考查了折叠的性质、矩形的性质、坐标与图形性质、勾股定理等知识;熟练掌握折叠的性质和勾股定理是解决问题的关键三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13(6分)(1)计算:;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且EFG=90求证:EBFFCG【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得B=C=90,
13、再利用等角的余角相等得BEF=CFG,然后根据有两组角对应相等的两个三角形相似可判定EBFFCG【解答】(1)解:原式=;(2)证明:四边形ABCD为正方形,B=C=90,BEF+BFE=90,EFG=90,BFE+CFG=90,BEF=CFG,EBFFCG【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似也考查了分式的乘除法和正方形的性质14(6分)解不等式组:,并把解集在数轴上表示出来【分析】分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集【解答】解:解不等式2x6,得:x3,解不等式3(x2)x4,得:x1,将不等式解集表示在数轴如下:则不等式组
14、的解集为3x1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键15(6分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率【分析】(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案【解答】解:(1)有豆沙粽、肉粽各1
15、个,蜜枣粽2个,随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键16(6分)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N四边形ABNM是平行四边形(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形【解答】解:(1)连接AF、BE、C
16、G,CG交AF于M,交BE于N四边形ABNM是平行四边形(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形【点评】本题考查复杂作图、平行四边形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型17(6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20,而当手指接触键盘时,肘部形成的“手肘角”约为100图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 江西 宜春 中考 数学 答案
限制150内