新人教版数学七年级上册第三章全部ppt课件.pptx
《新人教版数学七年级上册第三章全部ppt课件.pptx》由会员分享,可在线阅读,更多相关《新人教版数学七年级上册第三章全部ppt课件.pptx(298页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版数学七年级上册第三章全部课件3.1 从算式到方程3.1.1 一元一次方程人教版 数学 七年级 上册 汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米王家庄到翠湖的路程有多远?地名 时间王家庄10:00青山13:00秀水15:00导入新知你会用算术方法解决这个实际问题吗?汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米王家庄到翠湖的路程有多远?地名 时间王家庄10:00青山13:00秀水15:00用算术方法解决导入新知 如果设王家庄到翠湖的路程为x千米,你能列出方程吗
2、?汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米王家庄到翠湖的路程有多远?地名 时间王家庄10:00青山13:00秀水15:00王家庄 青山 翠湖秀水50千米70千米x千米示意图用方程来解决导入新知1.理解方程及一元一次方程的概念,会检验一个数是不是方程的解.2.通过实际问题的分析找出等量关系列出方程.3.通过列方程的过程,感受方程作为刻画现实世界有效模型的意义,从而体会数学的方程模型思想.素养目标 在小学,我们已经见过像 2x=50,3x+1=4,5x-7=8 这样简单的方程,还有下面列出的式子:方程含有未知数的等式又如:|x+
3、5|=2x2 8x+2=0 x+1=2x-5 6x-11=12知识点 1方程和一元一次方程的概念探究新知如:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程是多少?1h60 km/h70 km/h探究新知(1)上述问题中涉及到了哪些量?快车70 km/h,慢车60 km/h快车比慢车早1h经过B地AB之间的路程速度:时间:路程:AB快车慢车1h快车每小时比慢车多走10km60km相同的时间,快车比慢车多走60km快车走了6h算式:60(70-60)70=420(km)探究新知(2
4、)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间:慢车行完AB全程所用时间:两车所用的时间关系为:快车比慢车早到1h即:()-()=1慢车用时 快车用时AB快车慢车1h方程探究新知(3)如果用y表示快车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?方 程:70 y=60(y+1)等量关系:快车y小时路程=慢车(y+1)小时路程AB快车慢车1h探究新知(4)如果用z表示慢车行完AB的总时间,你能找到等量关系列出方程吗?方 程:70(z-1)=60z等量关系:慢车z小时路程=快车提前1小时走的路程 AB快车慢车1h探究新知比较:列
5、算式和列方程.列算式:列出的算式表示解题的计算过程,只能用已知数.对于较复杂的问题,列算式比较困难.列方程:方程是根据题中的等量关系列出的等式.既可用已知数,又可用未知数,解决问题比较方便.探究新知从算式到方程是数学的进步!观察下列方程,它们有什么共同点?70y=60(y+1)70(z-1)=60z问题1 每个方程中,各含有几个未知数?问题2 说一说每个方程中未知数的次数.问题3 等号两边的式子有什么共同点?1个1次都是整式探究新知这样的方程叫做一元一次方程.等号两边都是整式,(一次)只含有一个未知数,(一元)未知数的次数都是1,探究新知一元一次方程例1哪些是一元一次方程?(1);(2);(3
6、);(4);(5);(6);(7).(4)(5)是一元一次方程.解析:只含有一个未知数(元),未知数的次数都是1(次)的整式方程叫做一元一次方程素养考点 1一元一次方程的识别不是等式不是整式方程是不等式,不是方程未知数的次数是2含有两个未知数探究新知(1)3y-7;(2);(3)16y-7=9-2y;(4)7y-y2=12;(5)-4.5y-12=x-10;(6)3b-310;(7).7a+8=101.下列哪些是一元一次方程?巩固练习例2 若关于x的方程 是一元一次方程,则 n 的值为.【变式题】方程 是关于x的一元一次方程,则 m=.2或21注:一元一次方程中求字母的值,需谨记两个条件:未知
7、数的次数为1;未知数的系数不为0.利用一元一次方程的定义求字母的值素养考点 2探究新知加了限制条件,需进行取舍.2.方程3x5-2k-8=0是关于x的一元一次方程,则k=_.23.方程x|m|+4=0是关于x的一元一次方程,则m=_.4.方程(m-1)x-2=0是关于x的一元一次方程,则m_.1或-11巩固练习例3 根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x cm.等量关系:正方形边长4=周长,列方程:.x根据实际问题建立方程模型素养考点 3探究新知(2)一台计算机已使用1700 h,预计每月再使用150 h,经过
8、多少月这台计算机的使用时间达到规定的检修时间2450 h?解:设x月后这台计算机的使用时间达到2450 h.等量关系:已用时间+再用时间=检修时间,列方程:.探究新知(3)某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学生?解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为(1-0.52)x.列方程:0.52x-(1-0.52)x=8.等量关系:女生人数-男生人数=8,探究新知例4某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元该店在“61”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元
9、.求卖出铅笔的支数.解:设卖出铅笔x支,则卖出圆珠笔(60-x)支.等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87 列方程:.探究新知 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.思考:1.怎样将一个实际问题转化为方程问题?2.列方程的依据是什么?设未知数列方程一元一次方程抓关键句子找等量关系实际问题探究新知(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽 解:设这个足球场的宽为x米,依题意,得2x2(x25)310 解:设从甲队调给乙队x人,依题意,得54x(66x)(2)甲队有54人,乙队有66人,问从甲队调给
10、乙队几人,可使甲队的人数是乙队人数的三分之一?5.根据下列问题,设出未知数,列出方程:巩固练习方程的解 对于方程4x=24,容易知道 x=6可以使等式成立,对于方程 170+15x=245,你知道 x 等于什么时,等式成立吗?我们来试一试.x1 2 3 4 5 6 我们知道当x=5时,170+15x的值是245,所以方程 170+15x=245中的未知数的值应是5185 200 215 230 245 260170+15x知识点 2探究新知使方程等号两边相等的未知数的值叫做方程的解.2x-3=5x-15x=4是方程2x-3=5x-15的解.左边=23-3=3右边=53-15=0 x=4,5,6
11、时呢?x=3是不是方程的解呢?把x=3代入方程:因为 左边右边所以 x=3不是方程的解解:探究新知 使方程左右两边相等的未知数的值叫方程的解.求方程解的过程叫做解方程.x=420是 方程的解吗?探究新知方程的解例5 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x=80 的解?解:当x=1000时,方程左边=0.521000-(1-0.52)1000=520-480=40,右边=80,左边右边,所以x=1000不是此方程的解.当 x=2000时,方程左边=0.522000-(1-0.52)2000=1040-960=80,右边=80,左边=右边,所以x=2000是此方程
12、的解.方程的解的识别素养考点 1探究新知1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边右边,则是方程的解,反之,则不是判断一个数值是不是方程的解的步骤:巩固练习 方法归纳6下列一元一次方程中,解为 的是()A.B.C.D.B7方程 的解是()A.B.C.D.D巩固练习 由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1-a%-b%)B.m=24(1-a%)b%C.m=24-a%-b%D.m=24(1-a%)(1-b%)连 接 中 考D
13、巩固练习2.若 x=1是方程x2 2mx+1=0的一个解,则m的值为().A.0 B.2 C.1 D.-11.x=1是下列哪个方程的解().A.B.C.D.BC基 础 巩 固 题课堂检测3.下列方程:;其中是方程的是,是一元一次方程的 是(填序号)课堂检测基 础 巩 固 题 根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?解:设沿跑道跑x周.400 x=3000,是一元一次方程.能 力 提 升 题课堂检测(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用 9 元钱买了两种铅笔共20 支,两种铅笔各买
14、了多少支?解:设甲种铅笔买了x支,乙种铅笔买了(20-x)支.0.3x+0.6(20 x)=9,是一元一次方程.课堂检测能 力 提 升 题(3)一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2,求上底解:设上底为x cm,则下底为(x+2)cm.,是一元一次方程.(上底+下底)高=梯形面积能 力 提 升 题课堂检测 已知方程 是关于x的一元一 次方程,求m的值,并写出其方程解:因为方程 是关于x的一元一次方程,所以|m|1=1,且m20,得m=2.所以原方程为4x+3=7.拓 广 探 索 题课堂检测方程方 程建 立方 程模 型含有未知数的等式叫做方程.一元一次方程只含有一个未知
15、数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.方程的解解方程就是求出使方程中等号两边相等的未知数的值,这个值就是方程的解.实际问题一元一次方程设未知数找等量关系列方程课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习3.1 从算式到方程3.1.2 等式的性质人教版 数学 七年级 上册 从图中可以发现,如果在平衡的天平的两边都加(或减)同样的量,天平还保持平衡吗?导入新知素养目标2.能用等式的性质解简单的一元一次方程.1.能用文字和数学式子表达等式的两个性质.ba天平与等式 把一个等式看作一个天平,把等号两边的式子看作天 把一个等式看作一个天平,把等号两
16、边的式子看作天平两边的砝码,则等式成立就可看作是天平保持两边平衡 平两边的砝码,则等式成立就可看作是天平保持两边平衡.等式的左边等式的右边等 等 号 号知识点 1 等式的性质 1探究新知a右左你能发现什么规律?探究新知a右左探究新知你能发现什么规律?a右左探究新知你能发现什么规律?ab右左探究新知你能发现什么规律?ba右左探究新知你能发现什么规律?baa=b右左探究新知你能发现什么规律?baa=bc右左探究新知你能发现什么规律?cbaa=b右左探究新知你能发现什么规律?acba=b右左探究新知你能发现什么规律?cbcaa=b右左探究新知你能发现什么规律?cbcaa=ba+c b+c=右左探究新
17、知你能发现什么规律?c ca=ba b右左探究新知你能发现什么规律?ca=ba b右左探究新知你能发现什么规律?ca=ba b右左探究新知你能发现什么规律?a=bb a右左探究新知你能发现什么规律?a=ba-c b-c=b a右左探究新知你能发现什么规律??+(4)+(4)1+2 3-(5)-(5)上述两个问题反映出等式具有什么性质?1+2 3 等式的两边同时加上(或减去)同一个数所得的结果仍是等式 由等式1+2=3,进行判断:探究新知?+(4x)+(4x)2x+3x 5x-(x)-(x)2x+3x 5x由等式2x+3x=5x,进行判断:上述两个问题反映出等式具有什么性质?等式的两边同时加上(
18、或减去)同一个式子,所得的结果仍是等式 探究新知 等式的两边同时加上(或减去)同一个数或同一个式子,所得的结果仍是等式 性质1用式子的形式怎样表示?探究新知天平两边同时天平仍然平衡加入拿去相同质量的砝码相同的数(或式子)等式两边同时加上减去等式仍然成立换言之,等式两边同时加(或减)同一个数(或式子),结果仍相等.如果a=b,那么ac=bc.等式的性质1探究新知在下面的括号内填上适当的数或者式子:1.因为:所以:2.因为:所以:3.因为:所以:想一想、练一练探究新知baa=b右左知识点 2等式的性质 2探究新知你能发现什么规律你能发现什么规律?baa=b右左ab2a=2b你能发现什么规律你能发现
19、什么规律?探究新知baa=b右左b ba a3a=3b你能发现什么规律你能发现什么规律?探究新知baa=b右左b b b bbba a aaa aC个 C个ac=bc你能发现什么规律你能发现什么规律?探究新知ba你能发现什么规律你能发现什么规律?a=b 右左(c0)探究新知?2()2()223m+5m 8m 3m+5m 8m 由等式3m+5m=8m,进行判断:上述两个问题反映出等式具有什么性质?探究新知等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等.性质2用代数式子的形式怎样表示?探究新知如果a=b,那么ac=bc;如果a=b(c0),那么.代数式形式探究新知等式的性质1.等式两边
20、都要参加运算,且是同一种运算2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子3.等式两边不能都除以,即不能作除数或分母性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等.性质2:等式两边同时乘同一个数,或除以同一个不为的数,结果仍相等.注意探究新知依据等式的性质2两边同时除以4或同乘.识别等式变形的依据 素 养 考 点 1例1(1)怎样从等式 x 5=y 5 得到等式 x=y?依据等式的性质1两边同时加5.依据等式的性质1两边同时减3.(2)怎样从等式 3+x=1 得到等式 x=2?(3)怎样从等式 4x=12 得到等式 x=3?依据等式的性质2两边同时除以 或同乘100.
21、(4)怎样从等式 得到等式 a=b?探究新知(2)从 a+2=b+2 能不能得到 a=b,为什么?(3)从3a=3b 能不能得到 a=b,为什么?(4)从 3ac=4a 能不能得到 3c=4,为什么?(1)从 x=y 能不能得到,为什么?能,根据等式的性质2,两边同时除以9.能,根据等式的性质1,两边同时加上-2.能,根据等式的性质2,两边同时除以-3.不能,a可能为0.1.指出等式变形的依据.巩固练习例2 已知mx=my,下列结论错误的是()A.x=y B.a+mx=a+my C.mxy=myy D.amx=amy解析:根据等式的性质1,可知B、C正确;根据等式的性质2,可知D正确;根据等式
22、的性质2,A选项只有m0时才成立,故A错误A易错提醒:此类判断等式变形是否正确的题型中,尤其注意利用等式的性质2等式两边同除以某个字母,只有这个字母确定不为0时,等式才成立.素 养 考 点 2判断等式变形的对错探究新知(1)如果x=y,那么()(2)如果x=y,那么()(3)如果x=y,那么()(4)如果x=y,那么()(5)如果x=y,那么()2.判断对错,对的说明根据等式的哪一条性质;错的说出为什么。左边加右边减,等式不成立当a=5时,无意义两边乘的数不相等等式性质1等式的性质1和性质2巩固练习利用等式的性质解方程例3 利用等式的性质解下列方程:(1)(1)x+7=26 解:得:方程两边同
23、时减去7,x+7=26-7-7=x 19小结:解一元一次方程要“化归”为“x=a”的形式.素养考点 3探究新知两边同时除以-5,得解:方程(2)-5x=20 思考:为使(2)中未知项的系数化为1,将要用到等式的什么性质?化简得:x=-4-5x(-5)=20(-5)探究新知解:方程两边同时加上5得:化简得:方程两边同时 乘-3,得:x=-27x=-27是原方程的解吗?思考:对比(1),(3)有什么新特点?(3)探究新知 一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.例如,将 x=27 代入方程 的左边,方程的左右两边相等,所以 x=27 是原方程的解.探究新
24、知(1)x+6=17;(2)-3x=15;(4)(3)2x-1=-3;解:两边同时减去6,得x=11.解:两边同时除以-3,得x=-5.解:两边同时加上1,得2x=-2.两边同时除以2,得x=-1.解:两边同时加上-1,得两边同时乘以-3,得x=9.3.利用等式的性质解下列方程.巩固练习 经过对原方程的一系列变形(两边同加减、乘除),最终把方程化为最简的等式:x=a(常数)即方程左边只一个未知数项、且未知数项的系数是 1,右边只一个常数项.探究新知 方法归纳连 接 中 考 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量A2 B3
25、C4 D5D巩固练习1.下列说法正确的是()A.等式都是方程B.方程都是等式C.不是方程的就不是等式D.未知数的值就是方程的解B基 础 巩 固 题课堂检测A2.下列各式变形正确的是()A.由3x1=2x+1得3x2x=1+1B.由5+1=6得5=6+1C.由2(x+1)=2y+1得x+1=y+1D.由2a+3b=c6 得2a=c18b基 础 巩 固 题课堂检测3.下列变形,正确的是()A.若ac=bc,则a=b B.若,则a=b C.若a2=b2,则a=b D.若,则x=2B基 础 巩 固 题课堂检测4.填空(1)将等式x3=5 的两边都_得到x=8,这是根据等式的性质_;(2)将等式 的两边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 数学 年级 上册 第三 全部 ppt 课件
限制150内