数学建模-神经网络算法课件.ppt
《数学建模-神经网络算法课件.ppt》由会员分享,可在线阅读,更多相关《数学建模-神经网络算法课件.ppt(203页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模经典算法陈旺虎神经网络与神经网络与神经网络算法神经网络算法学习目标拓宽视野感受神经网络算法的应用背景能够用神经网络算法解决一些简单问题不探究详细的理论基础内容安排人工神经网络简介人工神经网络的基本功能人工神经网络的发展历史人工神经网络的生物学基础M-P模型前馈神经网络单层感知器多层感知器BP算法BP网络应用案例(MATLAB计算)1.人工神经网络简介 生物神经网络生物神经网络 人类的大脑大约有人类的大脑大约有1.41011个神经细胞,亦称为神经元。个神经细胞,亦称为神经元。每个神经元有数以千计的通道同其它神经元广泛相互每个神经元有数以千计的通道同其它神经元广泛相互连接,形成复杂的生物神
2、经网络。连接,形成复杂的生物神经网络。人工神经网络人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,就称为人工神经络进行抽象,并建立某种简化模型,就称为人工神经网络(网络(Artificial Neural Network,缩写,缩写 ANN)。)。对人类大脑系统的一阶特性的一种描述。对人类大脑系统的一阶特性的一种描述。(生理角度的模拟)(生理角度的模拟)基本原理基本原理存在一些输入和相应的输出,而对如何由输入得到输存在一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚出的机理并不清楚把输入与输出之间
3、的未知过程看成是一个把输入与输出之间的未知过程看成是一个“网络网络”,通过不断地给这个网络输入和相应的输出来通过不断地给这个网络输入和相应的输出来“训练训练”这个网络,网络根据输入和输出不断地调节自己的各这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。节点之间的权值来满足输入和输出。当训练结束后,给定一个输入,网络便会根据已调节当训练结束后,给定一个输入,网络便会根据已调节好的权值计算出相应的输出。好的权值计算出相应的输出。严格定义严格定义ANN最典型的定义由最典型的定义由Simpson在在1987年提出年提出人人工工神神经经网网络络是是一一个个非非线线性性的的有
4、有向向图图,图图中中含含有有可可以以通通过过改改变变权权大大小小来来存存放放模模式式的的加加权权边边,并并且且可可以以从从不不完整的或未知的输入找到模式。完整的或未知的输入找到模式。ANN算法算法根据人的认识过程而开发出的一种算法根据人的认识过程而开发出的一种算法2.人工神经网络的基本功能(1)联想记忆功能)联想记忆功能由于神经网络具有分布由于神经网络具有分布存储信息和并行计算的存储信息和并行计算的性能,因此它具有对外性能,因此它具有对外界刺激信息和输入模式界刺激信息和输入模式进行联想记忆的能力。进行联想记忆的能力。联想记忆有两种基本形联想记忆有两种基本形式式自联想记忆自联想记忆异联想记忆异联
5、想记忆自联想记忆自联想记忆网络中预先存储(记忆网络中预先存储(记忆)多种模式信息多种模式信息当输入某个已存储模式的部分信息或带有噪声干扰的当输入某个已存储模式的部分信息或带有噪声干扰的信息时,网络能通过动态联想过程回忆起该模式的全信息时,网络能通过动态联想过程回忆起该模式的全部信息部信息异联想记忆异联想记忆网络中预先存储了多个模式对网络中预先存储了多个模式对每一对模式均由两部分组成,当输入某个模式对的一每一对模式均由两部分组成,当输入某个模式对的一部分时,即使输入信息是残缺的或迭加了噪声的,网部分时,即使输入信息是残缺的或迭加了噪声的,网络也能回忆起与其对应的另一部分络也能回忆起与其对应的另一
6、部分不完整模式的自联想不完整模式的自联想神经网络通过预先存储信息和学习机制进行自适应训神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完练,可以从不完整的信息和噪声干扰中恢复原始的完整信息整信息这一能力使其在图象复原、图像和语音处理、模式识这一能力使其在图象复原、图像和语音处理、模式识别、分类等方面具有巨大的潜在应用价值别、分类等方面具有巨大的潜在应用价值2.人工神经网络的基本功能(续)(2)非线性映射功能)非线性映射功能非线性映射功能非线性映射功能在客观世界中,许多系统的输入与输出之间存在复杂在客观世界中,许多系统的输入与输出之间存在复杂的非线性关系
7、,对于这类系统,往往很难用传统的数的非线性关系,对于这类系统,往往很难用传统的数理方法建立其数学模型。理方法建立其数学模型。设计合理的神经网络,通过对系统输入输出样本对进设计合理的神经网络,通过对系统输入输出样本对进行自动学习,能够以任意精度逼近任意复杂的非线性行自动学习,能够以任意精度逼近任意复杂的非线性映射。映射。神经网络的这一优良性能使其可以作为多维非线性函神经网络的这一优良性能使其可以作为多维非线性函数的通用数学模型。该模型的表达是非解析的,输入数的通用数学模型。该模型的表达是非解析的,输入输出数据之间的映射规则由神经网络在学习阶段自动输出数据之间的映射规则由神经网络在学习阶段自动抽取
8、并分布式存储在网络的所有连接中。抽取并分布式存储在网络的所有连接中。具有非线性映射功能的神经网络应用十分广阔,几乎具有非线性映射功能的神经网络应用十分广阔,几乎涉及所有领域。涉及所有领域。2.人工神经网络的基本功能(续)(3)分类与识别功能)分类与识别功能分类与识别功能分类与识别功能神经网络对外界输入样本具有很强的识别与分类能力。神经网络对外界输入样本具有很强的识别与分类能力。对输入样本的分类实际上是在样本空间找出符合分类对输入样本的分类实际上是在样本空间找出符合分类要求的分割区域,每个区域内的样本属于一类。要求的分割区域,每个区域内的样本属于一类。传统分类方法只适合解决同类相聚,异类分离的的
9、识传统分类方法只适合解决同类相聚,异类分离的的识别与分类问题。别与分类问题。但客观世界中许多事物(例如,不同的图象、声音、但客观世界中许多事物(例如,不同的图象、声音、文字等等)在样本空间上的区域分割曲面是十分复杂文字等等)在样本空间上的区域分割曲面是十分复杂的,相近的样本可能属于不同的类,而远离的样本可的,相近的样本可能属于不同的类,而远离的样本可能同属一类。能同属一类。神经网络可以很好地解决对非线性曲面的逼近,因此神经网络可以很好地解决对非线性曲面的逼近,因此比传统的分类器具有更好的分类与识别能力。比传统的分类器具有更好的分类与识别能力。2.人工神经网络的基本功能(续)(4)优化计算功能)
10、优化计算功能优化计算功能优化计算功能优化计算是指在已知的约束条件下,寻找一组参数组优化计算是指在已知的约束条件下,寻找一组参数组合,使由该组合确定的目标函数达到最小值。合,使由该组合确定的目标函数达到最小值。某些类型的神经网络可以把待求解问题的可变参数设某些类型的神经网络可以把待求解问题的可变参数设计为网络的状态,将目标函数设计为网络的能量函数。计为网络的状态,将目标函数设计为网络的能量函数。神经网络经过动态演变过程达到稳定状态时对应的能神经网络经过动态演变过程达到稳定状态时对应的能量函数最小,从而其稳定状态就是问题的最优解。量函数最小,从而其稳定状态就是问题的最优解。这种优化计算不需要对目标
11、函数求导,其结果是网络这种优化计算不需要对目标函数求导,其结果是网络自动给出的。自动给出的。2.人工神经网络的基本功能(续)(5)知识处理功能)知识处理功能知识处理功能知识处理功能知识是人们从客观世界的大量信息以及自身的实践中知识是人们从客观世界的大量信息以及自身的实践中总结归纳出来的经验、规则和判据。总结归纳出来的经验、规则和判据。神经网络获得知识的途径与人类似,也是从对象的输神经网络获得知识的途径与人类似,也是从对象的输入输出信息中抽取规律而获得关于对象的知识,并将入输出信息中抽取规律而获得关于对象的知识,并将知识分布在网络的连接中予以存储。知识分布在网络的连接中予以存储。神经网络的知识抽
12、取能力使其能够在没有任何先验知神经网络的知识抽取能力使其能够在没有任何先验知识的情况下自动从输入数据中提取特征,发现规律,识的情况下自动从输入数据中提取特征,发现规律,并通过自组织过程将自身构建成适合于表达所发现的并通过自组织过程将自身构建成适合于表达所发现的规律。规律。另一方面,人的先验知识可以大大提高神经网络的知另一方面,人的先验知识可以大大提高神经网络的知识处理能力,两者相结合会使神经网络智能得到进一识处理能力,两者相结合会使神经网络智能得到进一步提升。步提升。神经网络的发展历程经过了神经网络的发展历程经过了4个阶段。个阶段。(1)启蒙期(启蒙期(1890-1969年)年)1890年,年
13、,W.James发表专著发表专著心理学心理学,讨论了脑的结构和功能。,讨论了脑的结构和功能。1943年,心理学家年,心理学家W.S.McCulloch和数学家和数学家W.Pitts提出了描述脑提出了描述脑神经细胞动作的数学模型,即神经细胞动作的数学模型,即M-P模型(第一个神经网络模型)。模型(第一个神经网络模型)。1949年,心理学家年,心理学家Hebb实现了对脑细胞之间相互影响的数学描述,实现了对脑细胞之间相互影响的数学描述,从心理学的角度提出了至今仍对神经网络理论有着重要影响的从心理学的角度提出了至今仍对神经网络理论有着重要影响的Hebb学习法则。学习法则。1958年,年,E.Rosen
14、blatt提出了描述信息在人脑中贮存和记忆的数学提出了描述信息在人脑中贮存和记忆的数学模型,即著名的感知机模型(模型,即著名的感知机模型(Perceptron)。)。1962年,年,Widrow和和Hoff提出了自适应线性神经网络,即提出了自适应线性神经网络,即Adaline网网络,并提出了网络学习新知识的方法,即络,并提出了网络学习新知识的方法,即Widrow和和Hoff学习规则学习规则(即(即学习规则),并用电路进行了硬件设计。学习规则),并用电路进行了硬件设计。3.神经网络的发展历史3.神经网络的发展历史(续)(2)低潮期(低潮期(1969-1982)受当时神经网络理论研究水平的限制,以
15、及冯受当时神经网络理论研究水平的限制,以及冯诺依诺依曼式计算机发展的冲击等因素的影响,神经网络的研曼式计算机发展的冲击等因素的影响,神经网络的研究陷入低谷。究陷入低谷。在美、日等国有少数学者继续着神经网络模型和学习在美、日等国有少数学者继续着神经网络模型和学习算法的研究,提出了许多有意义的理论和方法。算法的研究,提出了许多有意义的理论和方法。例如,例如,1969年,年,S.Groisberg和和A.Carpentet提出了至今为止提出了至今为止最复杂的最复杂的ART网络,该网络可以对任意复杂的二维模式进行自网络,该网络可以对任意复杂的二维模式进行自组织、自稳定和大规模并行处理。组织、自稳定和大
16、规模并行处理。1972年,年,Kohonen提出了提出了自组织映射的自组织映射的SOM模型模型。3.神经网络的发展历史(续)(3)复兴期(复兴期(1982-1986)1982年,物理学家年,物理学家Hoppield提出了提出了Hoppield神经网络神经网络模型,该模型通过引入能量函数,实现了问题优化求模型,该模型通过引入能量函数,实现了问题优化求解,解,1984年他用此模型成功地解决了旅行商路径优化年他用此模型成功地解决了旅行商路径优化问题问题(TSP)。在在1986年,在年,在Rumelhart和和McCelland等出版等出版Parallel Distributed Processing
17、一书,提出了一书,提出了一种著名的多层神经网络模型,即一种著名的多层神经网络模型,即BP网络。该网络是网络。该网络是迄今为止应用最普遍的神经网络。迄今为止应用最普遍的神经网络。3.神经网络的发展历史(续)(4)新连接机制时期(新连接机制时期(1986-现在)现在)神经网络从理论走向应用领域,出现了神经网络芯片神经网络从理论走向应用领域,出现了神经网络芯片和神经计算机。和神经计算机。神经网络主要应用领域有神经网络主要应用领域有模式识别与图象处理(语音、指纹、故障检测和图象压缩等)模式识别与图象处理(语音、指纹、故障检测和图象压缩等)控制与优化控制与优化预测与管理(市场预测、风险分析)预测与管理(
18、市场预测、风险分析)等等神经生理学和神经解剖学的研究结果表明,神经元神经生理学和神经解剖学的研究结果表明,神经元(Neuron)是脑组织的基本单元,是人脑信息处理系统的最是脑组织的基本单元,是人脑信息处理系统的最小单元小单元。4.人工神经网络的生物学基础1.神经元及其联接;2.神经元之间的联接强度决定信号传递的强弱;3.神经元之间的联接强度是可以随训练改变的;4.信号可以是起刺激作用的,也可以是起抑制作用的;5.一个神经元接受的信号的累积效果决定该神经元的状态;6.每个神经元可以有一个“阈值”4.1 生物神经元的信息处理机理生物神经元的信息处理机理(1)信息的产生)信息的产生 神经元间信息的产
19、生、传递和处理是一种电化学活动。神经元间信息的产生、传递和处理是一种电化学活动。神经元状态神经元状态静息静息静息静息兴奋兴奋兴奋兴奋抑制抑制抑制抑制 膜电位膜电位极极极极 化化化化去极化去极化去极化去极化超极化超极化超极化超极化4.1 生物神经元的信息处理机理(续)生物神经元的信息处理机理(续)(2)信息的传递与接收)信息的传递与接收4.1 生物神经元的信息处理机理(续)生物神经元的信息处理机理(续)(3)信息的整合)信息的整合空间整合空间整合同一时刻产生的刺激所引起的膜电位变化,大致同一时刻产生的刺激所引起的膜电位变化,大致等于各单独刺激引起的膜电位变化的代数和等于各单独刺激引起的膜电位变化
20、的代数和时间整合时间整合各输入脉冲抵达神经元的时间先后不一样。总的各输入脉冲抵达神经元的时间先后不一样。总的突触后膜电位为一段时间内的累积突触后膜电位为一段时间内的累积4.2 神经元的人工模型神经元的人工模型 神经元及其突触是神经网络的基本器件。神经元及其突触是神经网络的基本器件。因此,模拟生物神经网络应首先模拟生物神经元因此,模拟生物神经网络应首先模拟生物神经元 人工神经元人工神经元(节点节点),从三个方面进行模拟从三个方面进行模拟:节点本身的信息处理能力节点本身的信息处理能力(数学模型数学模型)节点与节点之间连接节点与节点之间连接(拓扑结构拓扑结构)相互连接的强度相互连接的强度(通过学习来
21、调整通过学习来调整)决定人工神经网决定人工神经网络整体性能的三络整体性能的三大要素大要素 神经元的建模神经元的建模(1)(1)每个神经元都是一个多输入单输出的信息处理单元;每个神经元都是一个多输入单输出的信息处理单元;(2)(2)神经元输入分兴奋性输入和抑制性输入两种类型;神经元输入分兴奋性输入和抑制性输入两种类型;(6)(6)神经元本身神经元本身是非时变的是非时变的,即其突触时延和突触强度,即其突触时延和突触强度 均为常数。均为常数。(3)(3)神经元具有空间整合特性和阈值特性;神经元具有空间整合特性和阈值特性;(4)(4)神经元输入与输出间有神经元输入与输出间有固定的时滞固定的时滞,主要取
22、决于突触延搁;主要取决于突触延搁;(5)(5)忽略忽略时间整合作用;时间整合作用;模型的六点假设:模型的六点假设:假设1:多输入单输出正如生物神经元有正如生物神经元有许多激励输入一样许多激励输入一样,人工神经元也应,人工神经元也应该有许多的输入信该有许多的输入信号号图中,每个输入的图中,每个输入的大小用确定数值大小用确定数值x xi i表示,它们同时输表示,它们同时输入神经元入神经元j j,神经神经元的单输出元的单输出用用o oj j表表示。示。假设2:输入类型兴奋性和抑制性生物神经元具有不同的突触性质和突触强度,其对输入的影响是使有些输入在神经元产生脉冲输出过程中所起的作用比另外一些输入更为
23、重要。图中,对神经元的每一个图中,对神经元的每一个输入都有一个加权系数输入都有一个加权系数w wijij,称为权重值,其正负模称为权重值,其正负模拟了生物神经元中突触的拟了生物神经元中突触的兴奋和抑制兴奋和抑制,其大小大小则代表了突触的不同连接强度。假设3:空间整合特性和阈值特性作为ANN的基本处理单元,必须对全部输入信号进行整合,以确定各类输入的作用总效果图中,表示组合输入信号的“总和值”,相应于生物神经元的膜电位。神经元激活与否取决于某一阈值电平,即只有当其输入总和超过阈值时,神经元才被激活而发放脉冲,否则神经元不会产生输出信号。神经元的输出图中,人工神经元的输出也同生物神经元一样仅有一个
24、如,用oj表示神经元输出,则输出与输入之间的对应关系可用图中的某种非线性函数来表示。神经元模型示意图4.2.1 人工神经元的数学模型人工神经元的数学模型人工神经元模拟生物神经元的一阶特性,具有生物神经元人工神经元模拟生物神经元的一阶特性,具有生物神经元的六大特征的六大特征一个人工神经元一般有多个输入和一个输出一个人工神经元一般有多个输入和一个输出一个人工神经元有一个转移函数(激发函数),不同的转一个人工神经元有一个转移函数(激发函数),不同的转移函数对应了不同的网络,也决定了网络的用途移函数对应了不同的网络,也决定了网络的用途4.2.1 人工神经元的数学模型人工神经元的数学模型ij 输入输出间
25、的突触时延;输入输出间的突触时延;Tj 神经元神经元j的阈值;的阈值;wij 神经元神经元i到到 j 的突触连接系数或称权重值;的突触连接系数或称权重值;f()神经元转移函数。神经元转移函数。(4.1)为简单起见,将4.1上式中的突触时延取为单位时间,则式(4.1)可写为4.2式。上式描述的神经元数学模型全面表达了神经元模型的6点假定。其中输入xi的下标i=1,2,n,输出oj的下标j体现了神经元模型假定(1)中的“多输入单输出”。权重值wij的正负体现了假定(2)中“突触的兴奋与抑制”。Tj代表假定(3)中神经元的“阈值”;“输入总和”常称为神经元在t时刻的净输入,用下面的式子表示:(4.2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 神经网络 算法 课件
限制150内