课程设计(论文)-基于单片机的步进电机控制系统设计.docx
《课程设计(论文)-基于单片机的步进电机控制系统设计.docx》由会员分享,可在线阅读,更多相关《课程设计(论文)-基于单片机的步进电机控制系统设计.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目 录前言11绪论2步进电机的研究背景2步进电机的概念22系统设计方案及原理23硬件电路设计3电源电路3按键电路4驱动电路5状态指示电路5时钟电路64. 软件电路设计6系统主程序框图6按键程序设计7正、反转程序设计8加、减程序设计910系统调试10调试结果116.总结11参考文献12附录一 proteus/keil仿真图13附录二 源程序清单14前言步进电动机是一种将脉冲信号变换成相应的角位移(或线性位移)的电磁装置,是一种特殊的电动机。步进电动机由于精确性以及其良好的性能,其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。本文
2、介绍了以51系列单片机AT89C51为控制核心所设计的步进电机的控制系统,用C语言编写出电机的正转、反转、加速、减速、停止程序,通过单片机、电机的驱动芯片ULN2004以及相应的按键实现以上功能,并且步进电机的工作状态要用相应的发光二极管显示出来。本文内容介绍了步进电机以及单片机原理、该系统的硬件电路、程序组成,同时对软、硬件进行了调试,同时介绍了调试过程中出现的问题以及解决问题的方法。该设计具有思路明确、可靠性高、稳定性强等特点,通过调试实现了上述功能。步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及
3、步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的它最突出的优点是可以在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,并且用其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,研制步进电机驱动器及其控制系统具有十分重要的意义。一般步进电机分三种:永磁式(PM) ,反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或
4、15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,
5、从而达到准确定位的目的;通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。2系统设计方案及原理本设计采用单片机AT89S51来作为整个步进电机控制系统的运动控制核心部件,采用了电机驱动芯片及其
6、外围电路构成了整个系统的驱动部分,再加上作为执行部件的步进电机来构成了一个基本的步进电机控制系统。步进电机的工作就是步进转动,其功用是将脉冲电信号变换为相应的角位移或是直线位移,就是给一个脉冲信号,电动机转动一个角度或是前进一步。步进电机的角位移量与脉冲数成正比,它的转速与脉冲频率(f)成正比,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。如下所示的步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图2.1是该四相反应式步进电机工作原理
7、示意图。系统的具体结构如下:1. 电源电路;2. 按键电路;3. 驱动电路;4. 状态指示电路;5. 时钟电路;图2.1四相步进电机步进示意图3硬件电路设计利用LM7812和LM7805芯片得到12V和5V的电压,它们的应用要注意以下几点:(1)输入输出压差不能太大,太大则转换效率急速降低,而且容易击穿损坏;(2)输出电流不能太大, 是其极限值。大电流的输出,散热片的尺寸要足够大,否则会导致高温保护或热击穿;(3)输入输出压差也不能太小,大小效率很差。 其中12V电压给步进电机供电,5V电压则给单片机供电。分别如图2.1、图2.2所示。图3.1 12V电源电路图3.2 5V电源电路32按键电路
8、本次设计选用的是单片机的P0口来控制信号的输入,所以把按键开关和P0口连接起来,当按下开关S1时,相当于给P0.0口一个低电平;当按下开关S2时,相当于给P0.1口一个低电平;当按下开关S3时,相当于给P0.2口一个低电平;当按下开关S4时,相当于给P0.3口一个低电平;当按下开关S5时,相当于给P0.4口一个低电平。然后通过单片机实行相应的操作。图3.3 按键电路此电路是步进电机的驱动部分,我选用的是ULN2004芯片来驱动的,ULN2004系列是一款高耐压,大电流达林顿管驱动器,包含7个NPN达林顿管。状态指示用P1口控制发光二极管的显示,如果相应端口是低电平,相应的发光二极管就会亮,用它
9、来表示步进电机所处的状态。时钟电路是计算机的心脏,它控制着计算机的工作节奏,可以通过提高时钟频率来提高CPU的速度,本次设计采用的晶振为12MHz。4软件电路设计系统主程序框图系统分为电机正转、电机反转、电机加速与电机减速的几部分组成,其主程序框图如图4.1所示。开始初始化调按键子程序调按键子程序调用正反转子程序调用加减速子程序停止图4.1 主程序框图按键程序用于判断P0.0口与P0.1口的值,当p0.0口为0时,电机正转,当p0.0口为1时,继续判断p0.1口的值,p0.1口为0时,电机反转。如图4.2所示。调按键子程序P是否为0P是否为0前进后退4.3正、反转程序设计系统初始化之后,前进子
10、程序R0用于给P2口输送不同的值,根据电机转动的相序,使电机正向转动,P2口的值分别为01H,03H,02H,06H,04H,0CH,08H,09H。正转流程图如图4.3所示。电机反转原理与正转相似,此时P2口的值分别为09H,08H,0CH,04H,06H,02H,03H,01H。反转流程图如图4.4所示。图4.4 后退部分流程图4.4加、减程序设计当电机正转或反转的时候,按下加速键,调用加速子程序,使电机每转动一步的延时时间变短,从而实现电机的加速。当电机正转或反转的时候,按下减速键,通过改变电机每转动一步的延时时间,使时间变长,从而实现电机减速。流程图如图4.5和图4.6所示。图4.5
11、加速部分流程图图4.6 减速部分流程5系统的调试5.1 系统调试在系统完成后测试后,检查系统是否能够协调运行,并对系统出现的情况进行分析,看是否能够达到系统创作之初所设想的效果,如达不到则重新修改系统,直到达到设计需要为止。本系统的设计思路为:首先从整体上划分出各功能模块,然后依次完成各个功能模块测试,最后将各个模块联系起来完成整个系统。在调试的过程中,遇到了很多问题。主要有:1. 确定步进电机的使用方法,和控制模式。此处尤为重要,这是整个系统的基础,也是确定软件是否能控制步进电机思路的开端。2.键盘设计完成后,在多次运行过程中发现按键是否按下难以直观准确判断,在此处进行改进设计,为每一个按键
12、接上一个发光二极管,当有键按下时,相对应的发光二极管变亮,使得按键动作形象直观。并以此方法测试步进电机控制程序。3.向电源插座送入12V直流电源,测量LM7805输出脚对地电压,是否为5V左右,这个电压的测量可以直接在L7805的OUT脚和GND之间完成。4. 单片机应用(电源)注意事项:在电源两端应该加一个47uF以上的电解电容和一个0.1uF的小电容,进行电源去藕滤波。5.可供霍尔片检测到的信号注意是S磁极。6.控制步进电机转动的程序段完成后,调试发现对步进电机速度的控制范围过小,查阅资料后发现设计思路不太合理,原先的设计思路是用主程序控制步进电机转动,采用延时方式控制步进电机速度,由定时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课程设计 论文 基于 单片机 步进 电机 控制系统 设计
限制150内