2021届高考数学二轮复习常考题型大通关(新高考)解答题:函数与导数.doc
《2021届高考数学二轮复习常考题型大通关(新高考)解答题:函数与导数.doc》由会员分享,可在线阅读,更多相关《2021届高考数学二轮复习常考题型大通关(新高考)解答题:函数与导数.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本资料分享自千人QQ群323031380 期待你的加入与分享2021届高考数学二轮复习常考题型大通关(新高考)解答题:函数与导数1.已知函数.(1)当时,求函数的单调区间.(2)是否存在实数,使得函数在上单调递增?若存在,求出的取值范围;若不存在,请说明理由.2.函数.(1)当时,求的图象在处的切线方程(为自然对数的底数);(2)当时,直线是图象的一条切线,求的值.3.已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)若函数有唯一零点,求的值.4.已知函数.(1)求函数的极值点;(2)当时,函数恰有三个不同的零点,求实数的取值范围.5.设函数.(1)求的单调区间;(2)当时,不等式恒成
2、立(其中为的导函数),求整数的最大值.6.已知函数,曲线在点处的切线方程为.(1)求的值;(2)证明函数存在唯一的极大值点,且.7.已知函数.(1)若,求函数的最大值;(2)设,若对任意,不等式恒成立,求实数的取值范围.8.已知函数.(1)讨论的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.答案以及解析1.答案:(1)当时,所以.令,得或,令,得,所以的单调递增区间为和,单调递减区间为.(2)因为函数,所以.要使函数在上单调递增,则时,即,即.令,则,所以当时,在上单调递减,当时,在上单调递增,所以是的极小值点,也是最小值点.又,所以在上的
3、最大值为.所以的取值范围为.2.答案:(1)当时,所以,且,则.所以的图象在处的切线方程为,即.(2)设切点为,则,因为,所以,令,则或,解得或.若,则,解得,满足.若,由可得,令,则,所以函数在上单调递增.又,所以为方程在上的唯一解,故,解得.综上可知,.3.答案:(1)当时,.又,曲线在点处的切线方程为,即.(2)原问题等价于关于的方程有唯一的解时,求的值.令,则.令,则在上单调递减.又当时,即在上单调递增;当时, 即在上单调递减.的极大值为.当时,;当时,.又当关于的方程有唯一的解时,即当函数有唯一零点时,的值为1.4.答案:(1)因为,所以,所以,当时,所以函数无极值点.当时,令,解得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 二轮 复习 题型 大通 新高 解答 函数 导数
限制150内