2021届高考数学二轮复习常考题型大通关(新高考)解答题:数列.doc
《2021届高考数学二轮复习常考题型大通关(新高考)解答题:数列.doc》由会员分享,可在线阅读,更多相关《2021届高考数学二轮复习常考题型大通关(新高考)解答题:数列.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本资料分享自千人QQ群323031380 期待你的加入与分享2021届高考数学二轮复习常考题型大通关(新高考)解答题:数列1.在等比数列中,前n项和为是和的等差中项.(1)求的通项公式;(2)设,求的最大值.2.已知数列满足.(1)若为等比数列,公比,且,求的值及数列的通项公式;(2)若为等差数列,公差,证明:.3.在数列的前项和;数列是首项为1,公差不为0的正项等差数列,且,成等比数列;这三个条件中任选一个,补充在下面的问题中,若问题中的存在,求出的值;若不存在,说明理由.已知数列,且_,设,是否存在正整数使得成等差数列?4.已知数列的前项和为,且对任意的有.(1)设,求证:数列是等比数列;
2、(2)设且,求的通项公式.5.已知是等差数列,满足,数列满足,且为等比数列.(1)求数列和的通项公式;(2)求数列的前项和.6.已知数列满足:.(1)求证:为等差数列,并求出数列的通项公式;(2)设,数列的前项和为,若不等式成立,求正整数的最小值.7.设是公比不为1的等比数列,为的等差中项.(1)求的公比;(2)若,求数列的前项和.8.已知数列的首项,前项和为,且满足,数列满足,对任意的,都有.(1)求数列的通项公式;(2)若,数列的前项和为,求.答案以及解析1.答案:(1)由题意得,即,设等比数列的公比为q,则有,解得,.(2),设,当或4时,取到最小值,的最大值为64.2.答案:(1)由得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 二轮 复习 题型 大通 新高 解答 数列
限制150内