专题08 正弦定理和余弦定理 -备战2022年高考数学一轮复习(真题+模拟)训练(解析版).doc
《专题08 正弦定理和余弦定理 -备战2022年高考数学一轮复习(真题+模拟)训练(解析版).doc》由会员分享,可在线阅读,更多相关《专题08 正弦定理和余弦定理 -备战2022年高考数学一轮复习(真题+模拟)训练(解析版).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题8 正弦定理和余弦定理第一部分 近3年高考真题一、选择题1(2021全国高考真题(文)在中,已知,则( )A1BCD3【答案】D【解析】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.2(2021全国高考真题(理)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )ABCD【答案】A【解析】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A3(2020全国高考真题(文)在ABC中,cosC=,AC=4,BC=3,则tanB=( )AB2C4D8【答案】C【解析】设故选:C4已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,则
2、C的方程为( )ABCD【答案】B【解析】法一:如图,由已知可设,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有在和中,由余弦定理得,又互补,两式消去,得,解得所求椭圆方程为,故选B5.的内角的对边分别为,若的面积为,则( )ABCD【答案】C【解析】由题可知所以由余弦定理所以故选C.二、填空题6(2020江苏高考真题)在ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是_【答案】或0【解析】三点共线,可设,即,若且,则三点共线,即,,,设,则,.根据余弦定理可得,解得,的长度为.当时,
3、 ,重合,此时的长度为,当时,重合,此时,不合题意,舍去.故答案为:0或.7.的内角的对边分别为.若,则的面积为_.【答案】【解析】由余弦定理得,所以,即解得(舍去)所以,8.在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.9.的内角的对边分别为,已知,则的面积为_【答案】.【解析】因为,结合正弦定理可得,可得,因为,结合余弦定理,可得,所以为锐角,且,从而求得,所以的面积为,故答案是.三、解答题10(2021北京高考真题)已知在中,(1)求的大小;(2)在下列三个条件中选
4、择一个作为已知,使存在且唯一确定,并求出边上的中线的长度;周长为;面积为;【答案】(1);(2)答案不唯一,具体见解析【解析】(1),则由正弦定理可得,解得;(2)若选择:由正弦定理结合(1)可得,与矛盾,故这样的不存在;若选择:由(1)可得,设的外接圆半径为,则由正弦定理可得,则周长,解得,则,由余弦定理可得边上的中线的长度为:;若选择:由(1)可得,即,则,解得,则由余弦定理可得边上的中线的长度为:.11(2021全国高考真题)记是内角,的对边分别为,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【解析】(1)由题设,由正弦定理知:,即,又,得证.(2)
5、由题意知:,同理,整理得,又,整理得,解得或,由余弦定理知:,当时,不合题意;当时,;综上,.12(2020北京高考真题)在中,再从条件、条件这两个条件中选择一个作为已知,求:()a的值:()和的面积条件:;条件:注:如果选择条件和条件分别解答,按第一个解答计分【答案】选择条件()8(), ;选择条件()6(), .【解析】选择条件()()由正弦定理得:选择条件()由正弦定理得:()13(2020江苏高考真题)在ABC中,角A,B,C的对边分别为a,b,c,已知(1)求的值;(2)在边BC上取一点D,使得,求的值【答案】(1);(2).【解析】(1)由余弦定理得,所以.由正弦定理得.(2)由于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题08 正弦定理和余弦定理 -备战2022年高考数学一轮复习真题+模拟训练解析版 专题 08 正弦 定理 余弦 备战 2022 年高 数学 一轮 复习 模拟 训练 解析
链接地址:https://www.taowenge.com/p-92416161.html
限制150内