高中数学必修5教案5篇.docx
《高中数学必修5教案5篇.docx》由会员分享,可在线阅读,更多相关《高中数学必修5教案5篇.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修5教案5篇教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:出示例1:在ABC中,已知下列条件,解三角形.分两组练习讨论:解的个数情况为何会发生变化?用如下图示分析解的情况.(A为锐角时)练习:在ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:出示例2:在ABC中,已知sinAsinBsinC=654,求最大角的余弦.分析:已知条件可以如何转化?引入参数k,设三边后利用余弦定理求角.
2、出示例3:在ABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别?求最大角余弦,由符号进行判断出示例4:已知ABC中,试判断ABC的形状.分析:如何将边角关系中的边化为角?再思考:又如何将角化为边?3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中数学必修5教案2教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一.基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角
3、(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨:三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60
4、km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。一.小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。3.边角互化是解三角形问题常用的手段.三.作业:P80闯关训练高中数学必修5教案3教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列
5、的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.【方法规律】1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.【示范举例】例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的
6、前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.高中数学必修5教案4教学准备教学目标数列求和的综合应用教学重难点数列求和的综合应用教学过程典例分析3.数列an的前n项和Sn=n2-7n-8,(1)求an的通项公式(2)求|an|的前n项和Tn4.等差数列an的公差为,S100=145,则a1+a3+a5+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-
7、n|=6.数列an是等差数列,且a1=2,a1+a2+a3=12(1)求an的通项公式(2)令bn=anxn,求数列bn前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列an中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有最大值,并求出它的最大值.已知数列an,anN,Sn=(an+2)2(1)求证an是等差数列(2)若bn=an-30,求数列bn前n项的最小值0.已知f(x)=x2-2(n+1)x+n2+5n-7(nN)(1)设f(x)的图象的顶点的横坐标构成数列an,求证数列an是等差数列(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 教案
限制150内