专题13二次函数与胡不归型最值问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
《专题13二次函数与胡不归型最值问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx》由会员分享,可在线阅读,更多相关《专题13二次函数与胡不归型最值问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、下载来源:初中数学资料群:795399662,其他科资料群:729826090挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题13二次函数与胡不归型最值问题 胡不归问题:模型分析:“PAkPB”型的最值问题,当k1时通常为轴对称之最短路径问题,而当k0时,若以常规的轴对称的方式解决,则无法进行,因此必须转换思路 如图,直线BM,BN交于点B,P为BM上的动点,点A在射线BM,BN同侧,已知sinMBNk过点A作ACBN于点C,交BM于点P,此时PAkPB取最小值,最小值即为AC的长 证明 如图,在BM上任取一点Q,连结AQ,作QDBN于点D由sinMBNk,可得QD kQB所以Q
2、AkQBQAQDAC,即得证【例1】(2022济南)抛物线yax2+x6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线ykx6经过点B点P在抛物线上,设点P的横坐标为m(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQBC,垂足为Q,求CQ+PQ的最大值【例2】(2022宜宾)如图,抛物线yax2+bx+c与x轴交于A(3,0)、B(1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标
3、;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值【例3】(2022东西湖区模拟)如图1,抛物线yx2+(m2)x2m(m0)与x轴交于A,B两点(A在B左边),与y轴交于点C连接AC,BC且ABC的面积为8(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使ATC60求(t1)2的值(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标【
4、例4】(2022成都模拟)如图,在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象与y轴,x轴分别相交于A(0,2),B(2,0),C(4,0)三点,点D是二次函数图象的顶点(1)求二次函数的表达式;(2)点P为抛物线上异于点B的一点,连接AC,若SACPSACB,求点P的坐标;(3)M是第四象限内一动点,且AMB45,连接MD,MC,求2MD+MC的最小值1(2022河北区二模)已知抛物线yx2+bx+c(b,c为常数)的图象与x轴交于A(1,0),B两点(点A在点B左侧)与y轴相交于点C,顶点为D()当b2时,求抛物线的顶点坐标;()若点P是y轴上一点,连接BP,当PBPC
5、,OP2时,求b的值;()若抛物线与x轴另一个交点B的坐标为(4,0),对称轴交x轴于点E,点Q是线段DE上一点,点N为线段AB上一点,且AN2BN,连接NQ,求DQ+NQ的最小值2(2021南海区二模)如图1,抛物线yx2+bx+c与x轴交于A、B两点,点A、B分别位于原点左、右两侧,且AO2BO4,过A点的直线ykx+c交y轴于点C(1)求k、b、c的值;(2)在抛物线的对称轴上是否存在一点P,使ACP为直角三角形?若存在,直接写出所有满足条件的点的坐标;若不存在,请说明理由;(3)如图2,点M为线段AC上一点,连接OM,求AM+OM的最小值3(2021宝安区模拟)(1)已知二次函数经过点
6、A(3,0)、B(1,0)、C(0,3),请求该抛物线解析式;(2)点M为抛物线上第二象限内一动点,BM交y轴于点N,当BM将四边形ABCM的面积分为1:2两部分时,求点M的坐标;(3)点P为对称轴上D点下方一动点,点Q为直线yx第一象限上的动点,且DPOQ,求BP+BQ的最小值并求此时点P的坐标4(2021南沙区一模)已知,抛物线ymx2+x4m与x轴交于点A(4,0)和点B,与y轴交于点C点D(n,0)为x轴上一动点,且有4n0,过点D作直线lx轴,且与直线AC交于点M,与抛物线交于点N,过点N作NPAC于点P点E在第三象限内,且有OEOD(1)求m的值和直线AC的解析式(2)若点D在运动
7、过程中,AD+CD取得最小值时,求此时n的值(3)若ADM的周长与MNP的周长的比为5:6时,求AE+CE的最小值5(2021射阳县三模)如图,抛物线yax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P,与直线BC相交于点M,连接AC,PB(1)求该抛物线的解析式;(2)设对称轴与x轴交于点N,在对称轴上是否存在点G,使以O、N、G为顶点的三角形与AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由;(3)抛物线上是否存在一点Q,使QMB与PMB的面积相等,若存在,求点Q的坐标;若不存在,请说明理由;(4)点E是y轴上的动点,连接ME,求ME+
8、CE的最小值6(2021深圳模拟)如图1,抛物线yx2+bx+c交x轴于A、B两点,其中点A坐标为(3,0),与y轴交于点C(0,3),点D为抛物线yx2+bx+c的顶点(1)求抛物线的函数表达式;(2)若点E在x轴上,且ECACAD,求点E的坐标;(3)如图2,点P为线段AC上方的抛物线上任一点,过点P作PHx轴于点H,与AC交于点M求APC的面积最大时点P的坐标;在的条件下,若点N为y轴上一动点,求HN+CN的最小值7(2021深圳模拟)已知:如图,点A(1,0),B(3,0),D(2,1),C是y轴上的点,且OC3(1)过点A作AMBC,垂足为M,连接AD、BD,求证:四边形ADBM为正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 13 二次 函数 胡不归型最值 问题 挑战 中考 数学 压轴 秘笈 揭秘 全国 通用 原卷版
链接地址:https://www.taowenge.com/p-92445389.html
限制150内