专题24 直线与圆锥曲线的位置关系-备战2022年高考数学一轮复习(真题+模拟)训练(解析版).docx
《专题24 直线与圆锥曲线的位置关系-备战2022年高考数学一轮复习(真题+模拟)训练(解析版).docx》由会员分享,可在线阅读,更多相关《专题24 直线与圆锥曲线的位置关系-备战2022年高考数学一轮复习(真题+模拟)训练(解析版).docx(139页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 直线与圆锥曲线的位置关系第一部分 真题分类1(2021天津高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若则双曲线的离心率为( )ABC2D3【答案】A【解析】设双曲线与抛物线的公共焦点为,则抛物线的准线为,令,则,解得,所以,又因为双曲线的渐近线方程为,所以,所以,即,所以,所以双曲线的离心率.故选:A.2(2021全国高考真题(文)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为_【答案】【解析】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以, ,即四边形面积等
2、于.故答案为:.3(2021江苏高考真题)已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.求直线的方程;求椭圆的标准方程.【答案】(1)证明见解析;(2);.【解析】(1),因此,;(2)由(1)知,椭圆的方程为,即,当在椭圆的内部时,可得.设点、,则,所以,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;联立,消去可得.,由韦达定理可得,又,而,解得合乎题意,故,因此,椭圆的方程为.4(2021天津高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且(1)求椭圆的方程;(2)直线与椭圆有唯一的公共点,与轴的正半轴交
3、于点,过与垂直的直线交轴于点若,求直线的方程【答案】(1);(2).【解析】(1)易知点、,故,因为椭圆的离心率为,故,因此,椭圆的方程为;(2)设点为椭圆上一点,先证明直线的方程为,联立,消去并整理得,因此,椭圆在点处的切线方程为.在直线的方程中,令,可得,由题意可知,即点,直线的斜率为,所以,直线的方程为,在直线的方程中,令,可得,即点,因为,则,即,整理可得,所以,因为,故,所以,直线的方程为,即.5(2021全国高考真题)已知椭圆C的方程为,右焦点为,且离心率为(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切证明:M,N,F三点共线的充要条件是【答案】(1);(2)
4、证明见解析.【解析】(1)由题意,椭圆半焦距且,所以,又,所以椭圆方程为;(2)由(1)得,曲线为,当直线的斜率不存在时,直线,不合题意;当直线的斜率存在时,设,必要性:若M,N,F三点共线,可设直线即,由直线与曲线相切可得,解得,联立可得,所以,所以,所以必要性成立;充分性:设直线即,由直线与曲线相切可得,所以,联立可得,所以,所以,化简得,所以,所以或,所以直线或,所以直线过点,M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是6(2021全国高考真题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直
5、线的斜率与直线的斜率之和.【答案】(1);(2).【解析】因为,所以,轨迹是以点、为左、右焦点的双曲线的右支,设轨迹的方程为,则,可得,所以,轨迹的方程为;(2)设点,若过点的直线的斜率不存在,此时该直线与曲线无公共点,不妨直线的方程为,即,联立,消去并整理可得,设点、,则且.由韦达定理可得,所以,设直线的斜率为,同理可得,因为,即,整理可得,即,显然,故.因此,直线与直线的斜率之和为.7(2021全国高考真题(理)已知抛物线的焦点为,且与圆上点的距离的最小值为(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值【答案】(1);(2).【解析】(1)抛物线的焦点为,所以,与圆上点的距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题24 直线与圆锥曲线的位置关系-备战2022年高考数学一轮复习真题+模拟训练解析版 专题 24 直线 圆锥曲线 位置 关系 备战 2022 年高 数学 一轮 复习 模拟 训练 解析
链接地址:https://www.taowenge.com/p-92453827.html
限制150内