专题15二次函数与角综合问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《专题15二次函数与角综合问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx》由会员分享,可在线阅读,更多相关《专题15二次函数与角综合问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx(97页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、下载来源:初中数学资料群:795399662,其他科资料群:729826090挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题15二次函数与角综合问题 二次函数与角综合问题,常见的主要有三种类型:1. 特殊角问题:(1) 利用特殊角的三角函数值找到线段之间的数量关系(2) 遇到特殊角可以构造特殊三角形,如遇到45构造等腰直角三角形,遇到30、60构造等边三角形,遇到90构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决(2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答(3)角的
2、和差问题3.角的最值问题:利用辅助圆等知识来解答【例1】(2022西宁)如图,抛物线yax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CDx轴于点D(1,0),将ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处(1)求抛物线解析式;(2)连接BE,求BCE的面积;(3)抛物线上是否存在一点P,使PEABAE?若存在,求出P点坐标;若不存在,请说明理由【分析】(1)由点A的坐标可得出点E的坐标,由点A,E的坐标,利用待定系数法即可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,由点A,B的坐标,利用待定系数法可求出直线AB的解
3、析式,利用一次函数图象上点的坐标特征可求出点C的坐标,再利用三角形的面积计算公式,结合SBCESABESACE,即可求出BCE的面积;(3)存在,由点A,B的坐标可得出OAOB,结合AOB90可得出BAE45,设点P的坐标为(m,m2+2m+3),分点P在x轴上方及点P在x轴下方两种情况考虑:当点P在x轴上方时记为P1,过点P1作P1Mx轴于点M,则EMP1M,进而可得出关于m的一元二次方程,解之即可得出m的值,将符合题意的m值代入点P的坐标中即可求出点P1的坐标;当点P在x轴下方时记为P2,过点P2作P2Nx轴于点N,则ENP2N,进而可得出关于m的一元二次方程,解之即可得出m的值,将符合题
4、意的m值代入点P的坐标中即可求出点P2的坐标【解答】解:(1)将ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处,点A的坐标为(3,0),点D的坐标为(1,0),点E的坐标为(1,0)将A(3,0),E(1,0)代入yax2+bx+3,得:,解得:,抛物线的解析式为yx2+2x+3(2)当x0时,y1(0)2+20+33,点B的坐标为(0,3)设直线AB的解析式为ymx+n(m0),将A(3,0),B(0,3)代入ymx+n,得:,解得:,直线AB的解析式为yx+3点C在直线AB上,CDx轴于点D(1,0),当x1时,y11+32,点C的坐标为(1,2)点A的坐标为(3,0),点B的坐
5、标为(0,3),点C的坐标为(1,2),点E的坐标为(1,0),AE4,OB3,CD2,SBCESABESACEAEOBAECD43422,BCE的面积为2(3)存在,理由如下:点A的坐标为(3,0),点B的坐标为(0,3),OAOB3在RtAOB中,AOB90,OAOB,BAE45.点P在抛物线上,设点P的坐标为(m,m2+2m+3)当点P在x轴上方时记为P1,过点P1作P1Mx轴于点M,在RtEMP1中,P1EA45,P1ME90,EMP1M,即m(1)m2+2m+3,解得:m11(不合题意,舍去),m22,点P1的坐标为(2,3);当点P在x轴下方时记为P2,过点P2作P2Nx轴于点N,
6、在RtENP2中,P2EN45,P2NE90,ENP2N,即m(1)(m2+2m+3),解得:m11(不合题意,舍去),m24,点P2的坐标为(4,5)综上所述,抛物线上存在一点P,使PEABAE,点P的坐标为(2,3)或(4,5)【例2】(2022益阳)如图,在平面直角坐标系xOy中,抛物线E:y(xm)2+2m2(m0)的顶点P在抛物线F:yax2上,直线xt与抛物线E,F分别交于点A,B(1)求a的值;(2)将A,B的纵坐标分别记为yA,yB,设syAyB,若s的最大值为4,则m的值是多少?(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上试探究:此时无论m为何负值,在y轴的负
7、半轴上是否存在定点G,使PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由【分析】(1)由抛物线的顶点式可直接得出顶点P的坐标,再代入抛物线F即可得出结论;(2)根据题意可分别表达A,B的纵坐标,再根据二次函数的性质可得出m的值;(3)过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,则PKQQNG,设出点M的坐标,可表达点Q和点G的坐标,进而可得出结论【解答】解:(1)由题意可知,抛物线E:y(xm)2+2m2(m0)的顶点P的坐标为(m,2m2),点P在抛物线F:yax2上,am22m2,a2(2)直线xt与抛物线E,F分别交于点A,B,yA(tm)2
8、+2m2t2+2mt+m2,yB2t2,syAyBt2+2mt+m22t23t2+2mt+m23(tm)2+m2,30,当tm时,s的最大值为m2,s的最大值为4,m24,解得m,m0,m(3)存在,理由如下:设点M的坐标为n,则M(n,2n2),Q(2nm,4n22m2),点Q在x轴正半轴上,2nm0且4n22m20,nm,M(m,m2),Q(mm,0)如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,KN90,QPK+PQK90,PQG90,PQK+GQN90,QPKGQN,PKQQNG,PK:QNKQ:GN,即PKGNKQQNPKmmmm2m,KQ2m2,
9、GNmm,(m2m)(mm)2m2QN解得QNG(0,)【例3】(2022鄂尔多斯)如图,在平面直角坐标系中,抛物线yax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P在抛物线上,过P作PDx轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使QCB45?若存在,请直接写出点Q的坐标;若不存在,请说明理由【分析】(1)根据待定系数法,将点A,点B代入抛物线解析式,解关于b,c的二元一次方程组,即可求得抛物线的解析式;(2)设出点P的坐标,确定出PDCO,由PDCO,列出方程求解即可;(3
10、)过点D作DFCP交CP的延长线于点F,过点F作y轴的平行线EF,过点D作DEEF于点E,过点C作CGEF于点G,证明DEFFGC(AAS),由全等三角形的性质得出DEFG,EFCG,求出F点的坐标,由待定系数法求出直线CF的解析式,联立直线CF和抛物线解析式即可得出点P的坐标【解答】解:(1)将点A(,0),B(3,)代入到yax2+bx+2中得:,解得:,抛物线的解析式为yx2+x+2;(2)设点P(m,m2+m+2),yx2+x+2,C(0,2),设直线BC的解析式为ykx+c,解得,直线BC的解析式为yx+2,D(m,m+2),PD|m2+m+2m2|m23m|,PDx轴,OCx轴,P
11、DCO,当PDCO时,以P、D、O、C为顶点的四边形是平行四边形,|m23m|2,解得m1或2或或,点P的横坐标为1或2或或;(3)当Q在BC下方时,如图,过B作BHCQ于H,过H作MNy轴,交y轴于M,过B作BNMH于N,BHCCMHHNB90,QCB45,BHC是等腰直角三角形,CHHB,CHM+BHNHBN+BHN90,CHMHBN,CHMHBN(AAS),CMHN,MHBN,H(m,n),C(0,2),B(3,),解得,H(,),设直线CH的解析式为ypx+q,解得,直线CH的解析式为yx+2,联立直线CF与抛物线解析式得,解得或,Q(,);当Q在BC上方时,如图,过B作BHCQ于H,
12、过H作MNy轴,交y轴于M,过B作BNMH于N,同理得Q(,)综上,存在,点Q的坐标为(,)或(,)【例4】(2022菏泽)如图,抛物线yax2+bx+c(a0)与x轴交于A(2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC(1)求抛物线的表达式;(2)将ABC沿AC所在直线折叠,得到ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当PCBABC时,求点P的坐标【分析】(1)利用待定系数法解答即可;(2)过点D作DEx轴于点E,利用轴对称的性质和三角形的中位线的性质定理求得线段OE,DE,则点D坐标可得;利用四边形OA
13、DC的面积SOAC+SACD,SADCSABC,利用三角形的面积公式即可求得结论;(3)利用分类讨论的思想方法分两种情况讨论解答:当点P在BC上方时,利用平行线的判定与性质可得点C,P的纵坐标相等,利用抛物线的解析式即可求得结论;当点P在BC下方时,设PC交x轴于点H,设HBHCm,利用等腰三角形的判定与性质和勾股定理求得m值,则点H坐标可求;利用待定系数法求得直线PC的解析式,与抛物线解析式联立即可求得点P坐标;【解答】解:(1)抛物线yax2+bx+c(a0)与x轴交于A(2,0)、B(8,0)两点,与y轴交于点C(0,4),解得:抛物线的表达式为y+x+4;(2)点D的坐标为(8,8),
14、理由:将ABC沿AC所在直线折叠,得到ADC,点B的对应点为D,如图,过点D作DEx轴于点E,A(2,0)、B(8,0),C(0,4),OA2,OB8,OC4,AOCCOB90,AOCCOB,ACOCBOCBO+OCB90,ACO+OCB90,ACB90,将ABC沿AC所在直线折叠,得到ADC,点B的对应点为D,点D,C,B三点在一条直线上由轴对称的性质得:BCCD,ABADOCAB,DEAB,DEOC,OC为BDE的中位线,OEOB8,DE2OC8,D(8,8);由题意得:SACDSABC,四边形OADC的面积SOAC+SADCSOAC+SABCOCOA+ABOC42+1044+2024;(
15、3)当点P在BC上方时,如图,PCBABC,PCAB,点C,P的纵坐标相等,点P的纵坐标为4,令y4,则+x+44,解得:x0或x6,P(6,4);当点P在BC下方时,如图,设PC交x轴于点H,PCBABC,HCHB设HBHCm,OHOBHB8m,在RtCOH中,OC2+OH2CH2,42+(8m)2m2,解得:m5,OH3,H(3,0)设直线PC的解析式为ykx+n,解得:yx+4,解得:,P(,)综上,点P的坐标为(6,4)或(,)1(2022江岸区模拟)已知:抛物线y(x+k)(x7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OBOC(1)如图1,求抛物线的解析式;(2)如图2,
16、点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);(3)如图3,在(2)的条件下,过点P作PEy轴于点E,延长EP至点G,使得PG3CE,连接CG交AP于点F,且AFC45,连接AG交抛物线于T,求点T的坐标【分析】(1)由图象可得B点坐标,代入函数解析数即可求解;(2)表示出点P坐标,由正切公式可表示出d与m的关系,即可求出;(3)作出辅助线,得到CGPW,利用正切公式求出m与k的值,得到G点坐标,然后表示出GAB的正切值,从而求出T点坐标【解答】解:(1)当y0时,(x+k)(x7)0,解得:xk或
17、7,点B的坐标为(7,0),A(k,0),OBOC,OCOB7,点C的坐标为(0,7),将点C的坐标代入抛物线表达式得:(0+k)(07)7,解得:k2,y(x+2)(x7)x2+x+7,故抛物线的表达式为yx2+x+7;(2)过点P作PKAB与点K,PEy轴于点E,如图1,y(x+2)(x7),P(m,(m+2)(m7),A(2,0),AKm+2,tanPAB,DOAOtanPAB2()7m,CD7(7m)m,dm(3)过点C作WCED使得WDPD,TLAB,连接WD,WP,设ECk,则PG3k,WCDDEP,CDEP,WDPD,WCDDEP,则PWD为等腰直角三角形,WPD45CFD,WP
18、CG,四边形CGPW为平行四边形,CWPG3kED,CD2kPE,tanAPE,由(2)可得tanPAB,m4,k2,EO7+29,EG10,G(10,9),A(2,0),tanGAB,再设T坐标为(t,(t+2)(t7),则tanTAB,t,T(,)2(2022沈阳模拟)如图1,在平面直角坐标系中抛物线yax2+bx+2与x轴交于A(4,0)和B(1,0),与y轴交于点C,连接AC,BC(1)求该抛物线的解析式;(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求MNQ周长的最大值;(3)点P为抛物线上的一动点,且
19、ACP45BAC,请直接写出满足条件的点P的坐标【分析】(1)用待定系数法可得抛物线的解析式为yx2x+2;(2)设直线AC解析式为ykx+2,用待定系数法得直线AC解析式为yx+2,设M(x,x2x+2),则N(x,x+2),即得MNx22x,可证QMNAOC,有,故MQ2MN,NQMN,可得MNQ周长MN+MQ+NQMN+2MN+MN(x2)2+6+2,即得当x2时,MNQ周长最大值为6+2;(3)在x轴负半轴上取D,使OCOD,连接CD交抛物线于P,此时ACP45BAC,P是满足条件的点,由C(0,2),D(2,0),得直线CD解析式为yx+2,即可解得P(5,3),作D关于直线AC的对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 15 二次 函数 综合 问题 挑战 中考 数学 压轴 秘笈 揭秘 全国 通用 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内