二项式定理教学设计(沈琦).doc
《二项式定理教学设计(沈琦).doc》由会员分享,可在线阅读,更多相关《二项式定理教学设计(沈琦).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本资料分享自千人教师QQ群323031380 期待你的加入与分享 300G资源等你来二项式定理(一)教学设计贵州省铜仁第一中学 沈琦 一、教学内容解析1.3.1二项式定理是普通高中课程标准实验教科书-数学选修2-3第一章第三部分第一节的内容,这节课内容上只有一个二项式定理但它却是前面内容的继续,也是后面内容的开始。在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它看做为计数原理的一个应用。另一方面也是为后面学习随机变量及分布做准备。二项式定理具有较高应用价值和思维训练价值,不仅能解决某些整除性、近似计算问题的一种方法,并能解释集合的子集个数问题;再者,二项式定理不仅仅是
2、初中多项式乘法的拓展,它又是学生进一步学习数学分析中函数级数展开式的一个特例,在组合理论、开高次方、高阶等差数列求和中有广泛的应用,因此这节课在高中数学中有着十分重要的作用。通过本课的教学,进一步提高学生的归纳演绎能力,让学生感受体验数学的简洁美、和谐美和对称美。教材中的二项式定理主要包括:定理本身,通项公式,二项式系数的性质等通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成。二项式定理本身是教学重点,因为它是后面各种应用的基础通项公式,二项式系数的性
3、质,特殊化方法等意义重大而深远,所以也应该是重点。二项式定理的证明是一个教学难点这是因为证明中符号比较抽象、需要恰当地运用组合数的性质。二、学情分析学生已经学习了计数原理、排列组合及合情推理的相关知识,已经具备了一定的归纳演绎和分析事件方法种数的能力。但是学生对数学严谨性的把握还不够,研究问题的方法和能力有待提高,有些学生容易粗心,对细节知识的把握还不够好。本节课二项式定理的推导运用了先猜想后证明,由特殊到一般的研究问题的思想方法。因此本堂课采用小组讨论学习,让学生在相互讨论的过程中直接或间接地感受和体验知识的产生、发展和演变过程,提高学生分析解决问题的能力。在教学中,努力把表现的机会让给学生
4、,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习。三、教学目标设置1.知识技能目标(1)理解二项式定理是代数乘法公式的推广。(2)理解并掌握二项式定理,能利用计数原理证明二项式定理。(3)掌握对简单的二项式进行展开,能够对项的系数与二项式系数进行区分,并能求出指定项。2.过程与方法目标通过学生经历二项式定理的形成过程,培养学生观察、分析、归纳的能力,以及化归的意识与方法迁移的能力,体会归纳猜想论证的思想方法,发展探究能力。3.情感、态度、价值观目标培养学生自主探究意识,合作精神,体验二项式定理
5、的发现和创造历程,体会数学语言的简捷和严谨。四、教学重点、难点重点:用两个计数原理分析的展开式得到二项式定理;掌握二项展开式的通项公式;能应用它解决一些简单问题。难点:用两个计数原理分析推导的展开式;用两个计数原理证明二项式定理。五、教学过程教学程序问 题设计意图师生活动创设问题情境引入新课引出问题:如果今天是星期五,14天后的这一天是星期几呢?23天后的这一天呢?师生归纳:比如23=73+2,所以23天后是星期日。算法:用各个数除以7,看余数是多少,再用五加余数来推算师:再过82016天后是星期几,你知道吗?不方便求出82016除以的余数,可以利用8=7+1,得到82016=(7+1)201
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 定理 教学 设计 沈琦
限制150内