用样本的数字特征估计总体的数字特征(一)公开课一等奖ppt课件.ppt
《用样本的数字特征估计总体的数字特征(一)公开课一等奖ppt课件.ppt》由会员分享,可在线阅读,更多相关《用样本的数字特征估计总体的数字特征(一)公开课一等奖ppt课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2 用样本估计总体.2.2用样本的数字特征估计总体的数字特征 第一课时 问题提出1.对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?2.美国NBA在20062007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行
2、研究,用样本的数字特征估计总体的数字特征.甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.知识探究(一):众数、中位数和平均数 思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O思
3、考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?取最高矩形下端中点的横坐标2.25作为众数.思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O0.5-0.04-0.08-0.15-0.22=0.01,0.010.5=0.02,中位数是2+0.02=2.02.思考5:平均数是频率分布直方图的
4、“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?0.25,0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25.月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数.由此估计总体的平均数是什么?0.250.04+0.750.08+1.250.15+1.750.22+2.250.25+2.750.14+3.2
5、5 0.06+3.750.04+4.250.02=2.02(t).平均数是2.02.思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 样本 数字 特征 估计 总体 公开 一等奖 ppt 课件
限制150内