《高中人教版高三数学知识点资料总结2023.docx》由会员分享,可在线阅读,更多相关《高中人教版高三数学知识点资料总结2023.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中人教版高三数学知识点资料总结2023人教版高三年级数学知识点总结11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0an其中nN_递减数列an+1an常数列an+1=an(3)数列的通项公式:如果数列an的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列an的首项(或前几项),且任一项an与它的前一项an-1(n2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.3.对数列概念的理解(1)数列是按一
2、定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区4.数列的函数特征数列是一个定义域为正整数集N_(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(nN_).人教版高三年级数学知识点总结3随机抽样简介(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行方法(1)
3、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。分层抽样简介分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从
4、各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。整群抽样定义什么是整群抽样整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。优缺点整群抽样的优点是实施方便、节省经费;整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。实施步骤先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:一、确定分群的标注二、
5、总体(N)分成若干个互不重叠的部分,每个部分为一群。三、据各样本量,确定应该抽取的群数。四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。与分层抽样的区别整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。系统抽样定义当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;(3)在第一段用简单随机抽样确定第一个个体编号l(lk);(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。
限制150内