八年级数学教案范文7篇 初中8年级数学教案.docx
《八年级数学教案范文7篇 初中8年级数学教案.docx》由会员分享,可在线阅读,更多相关《八年级数学教案范文7篇 初中8年级数学教案.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级数学教案范文7篇 初中8年级数学教案八年级数学教案范文1 教材分析 因式分解是代数式的一种重要恒等变形。数学课程标准虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续分式的化简、解方程等恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生
2、接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。 学情分析 通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。 教学目标 1、在分解因式的过程中体会整式乘法与因式分解之间的联系。 2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。 3、能运用提公因式法、公式法进行综合运用。 4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。 教学重点和难点 重点: 灵活运用平方差公式进行分解因式。 难点:
3、平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。 八年级数学教案范文2 教学分析 勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。 本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形
4、的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。 教学目标 一、 知识与技能 1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。 2、应用勾股定理解决简单的实际问题 3学会简单的合情推理与数学说理 二、 过程与方法 引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手
5、操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。 三、 情感与态度目标 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。 四、 重点与难点 1、探索和证明勾股定理 2熟练运用勾股定理 教学过程 一、创设情景,揭示课题 1、教师展示图片并介绍第一情景 以中国最早的一部数学著作周髀算经的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。 周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可
6、阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。” 2、教师展示图片并介绍第二情景 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。 二、师生协作,探究问题 1、现在请你也动手数一下格子,你能有什么发现吗? 2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢? 3、你能得到什么结论吗? 三、得出命
7、题 勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。 四、勾股定理的证明 赵爽弦图的证法(图2) 第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。 第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的 角三角形拼接形成的(虚线表示),不过中间缺出一个边长为
8、 的正方形“小洞”。 因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。 这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。 五、应用举例,拓展训练,巩固反馈。 勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。 例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解
9、释这是为什么吗? 六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题 2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。 七、讨论交流 让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。 我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。 八年级
10、数学教案范文3 教学目标 一、教学知识点: 1.旋转的定义.2.旋转的基本性质. 二、能力训练要求: 1.通过具体实例认识旋转,理解旋转的基本涵义. 2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质. 三、情感与价值观要求 1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识. 2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观. 教学重点:旋转的基本性质. 教学难点:探索旋转的基本性质. 教学方法: 1、遵
11、循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。 2、采用多媒体课件辅助教学。 教学过程: 一.巧设情景问题,引入课题 日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢? 1.在这些转动的现象中,它们都是绕着一个点转动的. 2.每个物体的转动都是向同一个方向转动. 3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置
12、有所改变. 4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转. 二.讲授新课 在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征. 议一议:
13、(课本67页)答:(1)旋转中心是O点,旋转角是AOD.旋转角还可以是BOE. (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置. (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的. (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以AOD与BOE是相等的. (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以AOB与DOE是相等的,又因为BOD是公共
14、角,所以,AOD与BOE是相等的. 看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢? 答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的. 因为点A与点D、点B与点E是对应点,且AOD=BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的. 由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿
15、相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等. 例1(课本68页例1) 师生共析经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360,一周需要60分,因此每分钟分针所转过的度数是6,这样20分时,分针逆转的角度即可求出. 解:(见课本68页) 书上68页做一做 三课堂练习 课本P69随堂练习. 1.解:旋转5次得到,旋转的角度分别等于60、120、180、240、300. 四.课时小结 五.课后作业:课本P69习题3.4 1、2、3. 六.活动与探究 1.分析图中的
16、旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律. 结果:旋转现象为: 整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45、90、135、180、225、270、315前后的图形共同组成的. 整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90、180、270前后的图形共同组成的. 整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180前后的图形共同组成的. 2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的? 过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;
17、或让学生仔细观察图形,分析图形,找出关系. 结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的. 整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90、180、 270.前后的图形共同组成的. 整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180前后的图形共同组成的. 板书设计:略 教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。 八年级数学教案范文4 单元(章)主题第三章 直棱柱任课教师与班级 本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时 教学目标(含重点、难点)及
18、 设置依据教学目标 1、了解多面体、直棱柱的有关概念. 2、会认直棱柱的侧棱、侧面、底面 3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征 教学重点与难点 教学重点:直棱柱的有关概念. 教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力. 教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型 教 学 过 程 内容与环节预设、简明设计意图二度备课(即时反思与纠正) 一、创设情景,引入新课 师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立
19、体图形呢? 析:学生很容易回答出更多的答案。 师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。 二、合作交流,探求新知 1.多面体、棱、顶点概念: 师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点? 析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点 2.合作交流
20、师:以学习小组为单位,拿出事先准备好的几何体。 学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描 述其特征。) 师:同学们再讨论一下,能否把自己的语言转化为数学语言。 学生活动:分小组讨论。 说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。 师:请大家找出与长方体,立方体类似的物体或模型。 析:举出实例。(找出区别) 师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱直棱柱有以下特征: 有上、下两个底面,底面是平面图形中的多边形,而且
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学教案范文7篇 初中8年级数学教案 年级 数学教案 范文 初中
限制150内