分数的基本性质说课稿12篇(分数的基本性质说课稿百度文库).docx
《分数的基本性质说课稿12篇(分数的基本性质说课稿百度文库).docx》由会员分享,可在线阅读,更多相关《分数的基本性质说课稿12篇(分数的基本性质说课稿百度文库).docx(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、分数的基本性质说课稿12篇(分数的基本性质说课稿百度文库)分数的基本性质说课稿1 一、教材简析和教材处理 1教材简析 分数的基本性质是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。 2教材处理 以前,教师通常把分数的基本性质看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律
2、,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。分数的基本性质可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点
3、,不能只是规律的结论和应用,而应有意识地突出思想和方法。 二、教学课件设计意图 场景一:故事引人,揭示课题。 有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。 让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
4、 场景二:发现问题,突出质疑。 既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。 3引入新课:下面算式有什么共同的特点?学生回答后 它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。 1出示思考题。 比较每组分数的分子和分母: (1)从左往右看,是按照什么规律变化的? (2)从右往左看,又是按照什么规律变化的? 让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。 2集体讨论,归纳性质。 (1
5、)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。 (2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。 (3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。 (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。 (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分
6、子和分母都乘以相同的数,分数的大小不变。 (6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”? 出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。 3出示例2:把3/4和15/24化成分母是8而大小不变的分数。 思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么? 通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。 如: 有助于学生顺利地运用分数与除法的关
7、系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。 场景四:多层练习,巩固深化。 1口答。 学生口答后,要求说出是怎样想的? 2判断对错,并说明理由。 运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。 3在下面()内填上合适的数。 练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。 分数的基本性质说课稿2 一、说教学理念 1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。 2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从
8、事数学活动的机会和充分的练习空间。 3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。 二、说教材 1、教学内容 分数的基本性质一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。 2、学情分析 学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简
9、单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。 3、教学目标: (1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。 (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探
10、究问题,培养学生的抽象概括能力。 (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。 教学重点: 理解和掌握分数的基本性质 教学难点: 学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。 教具学具: 课件,三张同样大小的长方形纸条、彩笔。 三、说教法 “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有: 1、实际操作法 指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认
11、识逐步理性化。 2、直观演示法 先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。 3、启发式教学法 运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。 四、说学法 1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。 2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独
12、立自主地学习将分数化成分母不同但大小相同 的分数,并尝试完成练习题,达到检验自学的目的。 五、说教学过程 (一)、创设情境激趣引新 (二)、新知探索 动手操作、形象感知 观察比较、探究规律 首尾照应、释疑解惑 (三)、巩固新知 判一判填一填找一找 (四)、扩展延伸 1、创设情境,激发兴趣,揭示课题。 上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。 (设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念
13、,带着疑问迅速切入正题。 2、探索新知 (1)、动手操作、形象感知 首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的13,26,48。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。 (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。 (2)、观察比较,探究规律 首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性
14、质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。 (设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。 3、巩固新知 在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包含有612=()()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的
15、方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。 4、拓展延伸 通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。 六、板书设计 分数的基本性质。 分数的分子、分母同时乘以或除以相同的数。 分数的大小不变。 分数的基本性质说课稿3 一、说
16、教学理念 1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。 2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。 3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。 二、说教材 1、教学内容 分数的基本性质一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,
17、这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。 2、学情分析 学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。 3、教学目标: (1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定
18、分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。 (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。 (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。 教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。 三、说教法 “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,
19、我采用的教学方法主要有: 1、实际操作法 指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。 2、直观演示法 先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。 3、启发式教学法 运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的.思维中获取新知。 四、说学法 1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那
20、三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。 2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。 五、说教学过程 (一)、新知铺垫 (二)、新知导入 (三)、新知探究 (四)、新知探究 (五)、新知训练 (六)、新知应用 (七)、新知强化 (八)、新知小结 1、新知铺垫和导入 上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而
21、揭示课题。 (设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。 2、新知探究 (1)、动手操作、形象感知 首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的12,24,48。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。 (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学
22、习开端。 (2)、观察比较,探究规律 首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。 (设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。 3、新知训练 在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分数 基本 性质 说课稿 12 百度 文库
限制150内