人教版高一数学必修二教案3篇(高一数学必修第二册教案).docx
《人教版高一数学必修二教案3篇(高一数学必修第二册教案).docx》由会员分享,可在线阅读,更多相关《人教版高一数学必修二教案3篇(高一数学必修第二册教案).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版高一数学必修二教案3篇(高一数学必修第二册教案)人教版高一数学必修二教案1 1、教学目标 (1)理解函数的概念; (2)了解区间的概念; 2、目标解析 (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用; 在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。 问题1:一枚炮弹发射后,经
2、过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. 1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示? 1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么? 设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。 问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应
3、。 问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。 设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。 问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称? 4.2在从集合A到集合B的一个函数f:AB中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,xR? 4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么? 人教版高一数学必修
4、二教案人教版高一数学必修二教案2 一、教材分析 1.教学内容 本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。 2.教材的地位和作用 函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。 3.教材的重点难点关键 教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念. 教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。 教学关键:从
5、学生的学习心理和认知结构出发,讲清楚概念的形成过程. 4.学情分析 高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强. 二、目标分析 (一)知识目标: 1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的
6、单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。 2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。 3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。 (二)过程与方法 培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分
7、析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。 三、教法与学法 1.教学方法 在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。 2.学习方法 自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。 四、过程分析 本节课的教学过程包括
8、:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。 (一)问题情景: 为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件) 新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。 (二)函数单
9、调性的定义引入 1.几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题: 问题1、观察下列函数图象,从左向右看图象的变化趋势? 问题2:你能明确说出“图象呈上升趋势”的意思吗? 通过学生的交流、探讨、总结,得到单调性的“通俗定义”: 从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象? 通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生
10、从图形语言到数学符号语言的翻译变得轻松。 设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。 (三)增函数、减函数的定义 在前面的基础上,让学生讨论归纳:如何使用数学语言
11、来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。 定义中的“当x1x2时,都有f(x1) 注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。 设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习
12、数学感念的方法,提高其个性品质。 (四)例题分析 在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。 2.例2.证明函数在区间(-,+)上是减函数。 在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。 变式一:函数f(x)=-3x+b在R上是减函数吗?为什么? 变式二:函数f(x)=kx+b(k0)在R上是减函数吗?你能用几种方法来判断。 变式三:函数f(x)=kx+b(k0)在R上是减函数吗?你能用几种方法来判断。 错误:实质上并没有证明,而是使用了所要证明的结论 例题设计意图:在理解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高一 数学 必修 教案 第二
限制150内