初中数学八年级下册教案模板3篇(八年级下册数学学案全集人教版).docx
《初中数学八年级下册教案模板3篇(八年级下册数学学案全集人教版).docx》由会员分享,可在线阅读,更多相关《初中数学八年级下册教案模板3篇(八年级下册数学学案全集人教版).docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学八年级下册教案模板3篇(八年级下册数学学案全集人教版)初中数学八年级下册教案模板1 一、业务学习 加强学习,提高思想认识,树立新的理念.坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的课程标准,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。另外,抽时间学习,并作学习笔记,以丰富自己的头脑,提高业务水平。 二、教学方面 教学工作是学校各项工作的中心,一学期来,在坚持抓好新课
2、程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在: 1、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。 2、注重课堂教学效果。针对初一年级学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。 3、要
3、进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。 4、考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。另外还要抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如在课堂上,多到他们身边站一站,多问一句:会不会,懂不懂,课后,对他们的不足及时帮助,使他们感受到老师的关心,从而能够主动
4、学习。 5、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,学习他人的先进教学方法。 6、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。 三、工作中存在的问题 1、教材挖掘不深入。 2、教法不够灵活,不能总是吸引学生学习,对学生的引导、启发不足。 3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导. 4、后进生的辅导不够,由于对学生的基础知识掌握情况了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的
5、情况怎样,教师心中也知道,有的学生只是做表面文章,“出工不出力” 5、教学反思不够。 四、今后努力的方向 1、加强学习,学习新课标下新的教学思想。 2、学习新课标,挖掘教材,进一步把握知识点和考点。 3、多听课,学习同科目教师先进的教学方法和教学理念。 4、加强转差培优力度。 5、加强教学反思,加大教学投入。 12.3.1.1等腰三角形(一) 教学目标 1.等腰三角形的概念。2.等腰三角形的性质。3.等腰三角形的概念及性质的应用。 教学重点:1.等腰三角形的概念及性质。2.等腰三角形性质的应用。 教学难点:等腰三角形三线合一的性质的理解及其应用。 教学过程 .提出问题,创设情境 在前面的学习中
6、,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是。 问题:那什么样的三角形是轴对称图形? 满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。 我们这节课就来认识一种成轴对称图形的三角形等腰三角形。 .导入新课:要求学生通过自己的思考来做一个等腰三角形。 作一条直线L,在L上取点A,在L外取点B
7、,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。 思考: 1.等腰三角形是轴对称图形吗?请找出它的对称轴。 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两
8、条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。 由此可以得到等腰三角形的性质: 1.等腰三角形的两个底角相等。(简写成“等边对等角”) 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合。(通常称作“三线合一”) 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角
9、形的全等来证明这些性质。同学们现在就动手来写出这些证明过程。 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS). 所以B=C. 如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为 所以BADCAD. 所以BD=CD,BDA=CDA=BDC=90. 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:ABC各角的度数. 分析:根据等边对等角的性质,我们可以得到 A=ABD,ABC=C=BDC, 再由BDC=A+ABD,就可得到ABC=C=BDC=2A. 再由三角形内角和为180,就可求出ABC的三个内角. 把A设为x的话,
10、那么ABC、C都可以用x来表示,这样过程就更简捷. 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC. A=ABD(等边对等角). 设A=x,则BDC=A+ABD=2x, 从而ABC=C=BDC=2x. 于是在ABC中,有 A+ABC+C=x+2x+2x=180, 解得x=36.在ABC中,A=35,ABC=C=72. 师下面我们通过练习来巩固这节课所学的知识. .随堂练习:1.课本P51练习1、2、3。2.阅读课本P49P51,然后小结。 .课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形
11、的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。 .作业:课本P56习题12.3第1、2、3、4题。 板书设计 12.3.1.1等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质:1.等边对等角2.三线合一 12.3.1.1等腰三角形(二) 教学目标 1.理解并掌握等腰三角形的判定定理及推论 2.能利用其性质与判定证明线段或角的相等关系. 教学重点:等腰三角形的判定定理及推论的运用 教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 年级 下册 教案 模板 全集 人教版
限制150内